The number of factorizations of numbers less than $x$ into factors less than $y$
HTML articles powered by AMS MathViewer
- by Douglas Hensley
- Trans. Amer. Math. Soc. 275 (1983), 477-496
- DOI: https://doi.org/10.1090/S0002-9947-1983-0682714-6
- PDF | Request permission
Abstract:
Let $K(x,y)$ be the number in the title. There is a function $f(r)$, concave and decreasing with $f(0) = 2$ and $f’(0) = 0$ such that if $r = \sqrt {\log x} /\log y$ then as $x \to \infty$ with $r$ fixed, \[ K(x,y) = x \exp \left ({f(r) \sqrt {\log x} + O {{(\log \log x)}^2}} \right )\]. The proof uses a uniform version of Chernoff’s theorem on large deviations from the sample mean of a sum of $N$ independent random variables.References
- R. R. Bahadur, Some limit theorems in statistics, Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 4, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1971. MR 0315820, DOI 10.1137/1.9781611970630
- N. G. de Bruijn, On the number of positive integers $\leq x$ and free prime factors $>y$. II, Nederl. Akad. Wetensch. Proc. Ser. A 69=Indag. Math. 28 (1966), 239–247. MR 0205945, DOI 10.1016/S1385-7258(66)50029-4
- P. Erdös, On some asymptotic formulas in the theory of the “factorisation numerorum.”, Ann. of Math. (2) 42 (1941), 989–993. MR 5516, DOI 10.2307/1968777 A. Oppenheim, On an arithmetic function. II, J. London Math. Soc. 2 (1927), 123-130. G. Szekeres and P. Turán, Über das zweite Hauptproblem der "Factorisatio Numerorum", Acta Litt. Sci. Szeged 6 (1933), 143-154. J. Vaaler, The Berry-Esseen inequality and the central limit theorem (to appear).
- V. M. Zolotarev, On the closeness of the distributions of two sums of independent random variables, Teor. Verojatnost. i Primenen. 10 (1965), 519–526 (Russian, with English summary). MR 0189109
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 275 (1983), 477-496
- MSC: Primary 10H25; Secondary 10K20, 60F10
- DOI: https://doi.org/10.1090/S0002-9947-1983-0682714-6
- MathSciNet review: 682714