Dehn surgery and satellite knots
HTML articles powered by AMS MathViewer
- by C. McA. Gordon
- Trans. Amer. Math. Soc. 275 (1983), 687-708
- DOI: https://doi.org/10.1090/S0002-9947-1983-0682725-0
- PDF | Request permission
Abstract:
For certain kinds of $3$-manifolds, the question whether such a manifold can be obtained by nontrivial Dehn surgery on a knot in ${S^3}$ is reduced to the corresponding question for hyperbolic knots. Examples are, whether one can obtain ${S^3}$, a fake ${S^3}$, a fake ${S^3}$ with nonzero Rohlin invariant, ${S^1} \times {S^2}$, a fake ${S^1} \times {S^2}, {S^1} \times {S^2} \# M$ with $M$ nonsimply-connected, or a fake lens space.References
- R. H. Bing and J. M. Martin, Cubes with knotted holes, Trans. Amer. Math. Soc. 155 (1971), 217–231. MR 278287, DOI 10.1090/S0002-9947-1971-0278287-4
- W. R. Brakes, Property $\textrm {R}$ and superslices, Quart. J. Math. Oxford Ser. (2) 31 (1980), no. 123, 263–281. MR 587091, DOI 10.1093/qmath/31.3.263
- Ronald Fintushel and Ronald J. Stern, Constructing lens spaces by surgery on knots, Math. Z. 175 (1980), no. 1, 33–51. MR 595630, DOI 10.1007/BF01161380
- Murray Gerstenhaber and Oscar S. Rothaus, The solution of sets of equations in groups, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 1531–1533. MR 166296, DOI 10.1073/pnas.48.9.1531
- F. González-Acuña, Dehn’s construction on knots, Bol. Soc. Mat. Mexicana (2) 15 (1970), 58–79. MR 356022
- C. McA. Gordon, Knots, homology spheres, and contractible $4$-manifolds, Topology 14 (1975), 151–172. MR 402762, DOI 10.1016/0040-9383(75)90024-5
- C. McA. Gordon and D. W. Sumners, Knotted ball pairs whose product with an interval is unknotted, Math. Ann. 217 (1975), no. 1, 47–52. MR 380816, DOI 10.1007/BF01363239
- K. W. Gruenberg, Residual properties of infinite soluble groups, Proc. London Math. Soc. (3) 7 (1957), 29–62. MR 87652, DOI 10.1112/plms/s3-7.1.29
- A. E. Hatcher, On the boundary curves of incompressible surfaces, Pacific J. Math. 99 (1982), no. 2, 373–377. MR 658066
- John Hempel, $3$-Manifolds, Annals of Mathematics Studies, No. 86, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1976. MR 0415619
- William H. Jaco and Peter B. Shalen, Seifert fibered spaces in $3$-manifolds, Mem. Amer. Math. Soc. 21 (1979), no. 220, viii+192. MR 539411, DOI 10.1090/memo/0220
- Klaus Johannson, Homotopy equivalences of $3$-manifolds with boundaries, Lecture Notes in Mathematics, vol. 761, Springer, Berlin, 1979. MR 551744
- Michel A. Kervaire, On higher dimensional knots, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965, pp. 105–119. MR 0178475
- Rob Kirby, Problems in low dimensional manifold theory, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 273–312. MR 520548
- Robion Kirby and Paul Melvin, Slice knots and property $\textrm {R}$, Invent. Math. 45 (1978), no. 1, 57–59. MR 467754, DOI 10.1007/BF01406223
- R. A. Litherland, Surgery on knots in solid tori, Proc. London Math. Soc. (3) 39 (1979), no. 1, 130–146. MR 538135, DOI 10.1112/plms/s3-39.1.130
- R. A. Litherland, Surgery on knots in solid tori. II, J. London Math. Soc. (2) 22 (1980), no. 3, 559–569. MR 596334, DOI 10.1112/jlms/s2-22.3.559
- Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89, Springer-Verlag, Berlin-New York, 1977. MR 0577064
- John W. Morgan, Nonsingular Morse-Smale flows on $3$-dimensional manifolds, Topology 18 (1979), no. 1, 41–53. MR 528235, DOI 10.1016/0040-9383(79)90013-2
- Louise Moser, Elementary surgery along a torus knot, Pacific J. Math. 38 (1971), 737–745. MR 383406
- Dale Rolfsen, Knots and links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, Calif., 1976. MR 0515288
- Horst Schubert, Knoten und Vollringe, Acta Math. 90 (1953), 131–286 (German). MR 72482, DOI 10.1007/BF02392437
- H. Seifert, Topologie Dreidimensionaler Gefaserter Räume, Acta Math. 60 (1933), no. 1, 147–238 (German). MR 1555366, DOI 10.1007/BF02398271
- Julius L. Shaneson, Embeddings with codimension two of spheres in spheres and $H$-cobordisms of $S^{1}\times S^{3}$, Bull. Amer. Math. Soc. 74 (1968), 972–974. MR 230325, DOI 10.1090/S0002-9904-1968-12107-X
- L. Siebenmann, On vanishing of the Rohlin invariant and nonfinitely amphicheiral homology $3$-spheres, Topology Symposium, Siegen 1979 (Proc. Sympos., Univ. Siegen, Siegen, 1979), Lecture Notes in Math., vol. 788, Springer, Berlin, 1980, pp. 172–222. MR 585660
- William P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 2, 417–431. MR 956596, DOI 10.1090/S0273-0979-1988-15685-6 —, The geometry and topology of $3$-manifolds, preprints, Princeton University.
- Friedhelm Waldhausen, Eine Klasse von $3$-dimensionalen Mannigfaltigkeiten. I, II, Invent. Math. 3 (1967), 308–333; ibid. 4 (1967), 87–117 (German). MR 235576, DOI 10.1007/BF01402956
- J. H. C. Whitehead, On adding relations to homotopy groups, Ann. of Math. (2) 42 (1941), 409–428. MR 4123, DOI 10.2307/1968907
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 275 (1983), 687-708
- MSC: Primary 57M25; Secondary 57N10
- DOI: https://doi.org/10.1090/S0002-9947-1983-0682725-0
- MathSciNet review: 682725