AF algebras with directed sets of finite-dimensional $^{\ast }$-subalgebras
HTML articles powered by AMS MathViewer
- by Aldo J. Lazar
- Trans. Amer. Math. Soc. 275 (1983), 709-721
- DOI: https://doi.org/10.1090/S0002-9947-1983-0682726-2
- PDF | Request permission
Abstract:
We characterize the unital $AF$ algebras whose families of finite dimensional $^{\ast }$-subalgebras are directed by inclusion. A representation theorem for the algebras of this class allows us to classify them up to $^{\ast }$-isomorphisms.References
- Ola Bratteli, Inductive limits of finite dimensional $C^{\ast }$-algebras, Trans. Amer. Math. Soc. 171 (1972), 195–234. MR 312282, DOI 10.1090/S0002-9947-1972-0312282-2
- Ola Bratteli and George A. Elliott, Structure spaces of approximately finite-dimensional $C^{\ast }$-algebras. II, J. Functional Analysis 30 (1978), no. 1, 74–82. MR 513479, DOI 10.1016/0022-1236(78)90056-3 J. Dixmier, Les ${C^{\ast } }$-algèbres et leur représentations, Gauthier-Villars, Paris, 1969.
- J. M. G. Fell, The structure of algebras of operator fields, Acta Math. 106 (1961), 233–280. MR 164248, DOI 10.1007/BF02545788
- James G. Glimm, On a certain class of operator algebras, Trans. Amer. Math. Soc. 95 (1960), 318–340. MR 112057, DOI 10.1090/S0002-9947-1960-0112057-5
- Karl Heinrich Hofmann and Francisco Javier Thayer, Approximately finite-dimensional $C^{\ast }$-algebras, Dissertationes Math. (Rozprawy Mat.) 174 (1980), 59. MR 576994
- Aldo J. Lazar, On some elementary properties of AF algebras, Indiana Univ. Math. J. 30 (1981), no. 3, 433–439. MR 611231, DOI 10.1512/iumj.1981.30.30034
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 275 (1983), 709-721
- MSC: Primary 46L35; Secondary 46L45
- DOI: https://doi.org/10.1090/S0002-9947-1983-0682726-2
- MathSciNet review: 682726