Structural stability and group cohomology
HTML articles powered by AMS MathViewer
- by Philip J. Fleming
- Trans. Amer. Math. Soc. 275 (1983), 791-809
- DOI: https://doi.org/10.1090/S0002-9947-1983-0682733-X
- PDF | Request permission
Abstract:
We prove a version of the theorem of Stowe concerning the stability of stationary points of a differentiable group action which is valid on Hilbert manifolds. This result is then used to show that the vanishing of certain cohomology groups is sufficient to guarantee structural semistability for a differentiable action of a group of finite type on a closed smooth manifold. We then apply this to groups of diffeomorphisms of the circle.References
- Robert A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0450957
- Robert Bieri, Homological dimension of discrete groups, 2nd ed., Queen Mary College Mathematics Notes, Queen Mary College, Department of Pure Mathematics, London, 1981. MR 715779
- C. Camacho, On $R^{k}\times Z^{1}$-actions, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971) Academic Press, New York, 1973, pp. 23–70. MR 0375391 N. Dunford and J. T. Schwartz, Linear operators, Vol. 1, Interscience, New York, 1958, p. 487.
- Jerrold E. Marsden, David G. Ebin, and Arthur E. Fischer, Diffeomorphism groups, hydrodynamics and relativity, Proceedings of the Thirteenth Biennial Seminar of the Canadian Mathematical Congress (Dalhousie Univ., Halifax, N.S., 1971) Canad. Math. Congr., Montreal, Que., 1972, pp. 135–279. MR 0402808
- David G. Ebin and Jerrold Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math. (2) 92 (1970), 102–163. MR 271984, DOI 10.2307/1970699
- Irving Kaplansky, Commutative rings, Allyn and Bacon, Inc., Boston, Mass., 1970. MR 0254021
- Serge Lang, Introduction to differentiable manifolds, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155257
- Sigeru Mizohata, Lectures on Cauchy problem, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, No. 35, Tata Institute of Fundamental Research, Bombay, 1965. Notes by M. K. Venkatesha Murthy and B. V. Singbal. MR 0219881
- Richard S. Palais, Equivalence of nearby differentiable actions of a compact group, Bull. Amer. Math. Soc. 67 (1961), 362–364. MR 130321, DOI 10.1090/S0002-9904-1961-10617-4
- J. Palis, Rigidity of the centralizers of diffeomorphisms and structural stability of suspended foliations, Differential topology, foliations and Gelfand-Fuks cohomology (Proc. Sympos., Pontifícia Univ. Católica, Rio de Janeiro, 1976) Lecture Notes in Math., Vol. 652, Springer, Berlin, 1978, pp. 114–121. MR 505654
- Charles Pugh and Michael Shub, Ergodicity of Anosov actions, Invent. Math. 15 (1972), 1–23. MR 295390, DOI 10.1007/BF01418639
- Charles Pugh and Michael Shub, Axiom $\textrm {A}$ actions, Invent. Math. 29 (1975), no. 1, 7–38. MR 377989, DOI 10.1007/BF01405171
- J. W. Robbin, A structural stability theorem, Ann. of Math. (2) 94 (1971), 447–493. MR 287580, DOI 10.2307/1970766
- R. Clark Robinson, Structural stability of $C^{1}$ flows, Dynamical systems—Warwick 1974 (Proc. Sympos. Appl. Topology and Dynamical Systems, Univ. Warwick, Coventry, 1973/1974; presented to E. C. Zeeman on his fiftieth birthday), Lecture Notes in Math., Vol. 468, Springer, Berlin, 1975, pp. 262–277. MR 0650640 P. R. G. Sad, A structurally stable ${\mathbf {Z }} \times {\mathbf {Z}}$ action, Proc. Amer. Math. Soc. 260 (1980), 515.
- Jean-Pierre Serre, Cohomologie des groupes discrets, Prospects in mathematics (Proc. Sympos., Princeton Univ., Princeton, N.J., 1970) Ann. of Math. Studies, No. 70, Princeton Univ. Press, Princeton, N.J., 1971, pp. 77–169 (French). MR 0385006
- S. Smale, Global stability questions in dynamical systems, Lectures in Modern Analysis and Applications, I, Springer, Berlin, 1969, pp. 150–158. MR 0248881
- Stephen Smale, Notes on differentiable dynamical systems, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 277–287. MR 0266245
- Dennis Stowe, The stationary set of a group action, Proc. Amer. Math. Soc. 79 (1980), no. 1, 139–146. MR 560600, DOI 10.1090/S0002-9939-1980-0560600-2
- André Weil, Remarks on the cohomology of groups, Ann. of Math. (2) 80 (1964), 149–157. MR 169956, DOI 10.2307/1970495
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 275 (1983), 791-809
- MSC: Primary 58F10; Secondary 58B99, 58D05, 58F09
- DOI: https://doi.org/10.1090/S0002-9947-1983-0682733-X
- MathSciNet review: 682733