On homogeneous polynomials on a complex ball
HTML articles powered by AMS MathViewer
- by J. Ryll and P. Wojtaszczyk
- Trans. Amer. Math. Soc. 276 (1983), 107-116
- DOI: https://doi.org/10.1090/S0002-9947-1983-0684495-9
- PDF | Request permission
Abstract:
We prove that there exist $n$-homogeneous polynomials ${p_n}$ on a complex $d$-dimensional ball such that ${\left \| {{p_n}} \right \|_\infty } = 1$ and ${\left \| {{p_n}} \right \|_2} \geqslant \sqrt \pi {2^{- d}}$. This enables us to answer some questions about ${H_p}$ and Bloch spaces on a complex ball. We also investigate interpolation by $n$-homogeneous polynomials on a $2$-dimensional complex ball.References
- Y. Benyamini and Y. Gordon, Random factorization of operators between Banach spaces, J. Analyse Math. 39 (1981), 45β74. MR 632456, DOI 10.1007/BF02803330
- George S. Carr, Formulas and theorems in pure mathematics, 2nd ed., Chelsea Publishing Co., New York, 1970. With an introduction by Jacques Dutka. MR 0389514
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- Albrecht Pietsch, Operator ideals, Mathematische Monographien [Mathematical Monographs], vol. 16, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. MR 519680
- Walter Rudin, Function theory in the unit ball of $\textbf {C}^{n}$, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594
- D. Rutovitz, Some parameters associated with finite-dimensional Banach spaces, J. London Math. Soc. 40 (1965), 241β255. MR 190708, DOI 10.1112/jlms/s1-40.1.241
- Richard M. Timoney, Bloch functions in several complex variables. I, Bull. London Math. Soc. 12 (1980), no.Β 4, 241β267. MR 576974, DOI 10.1112/blms/12.4.241 A. Zygmund, Trigonometric series, Cambridge Univ. Press., New York, 1979.
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 276 (1983), 107-116
- MSC: Primary 32A35; Secondary 32A05
- DOI: https://doi.org/10.1090/S0002-9947-1983-0684495-9
- MathSciNet review: 684495