Rigidity of pseudoconformal connections
HTML articles powered by AMS MathViewer
- by Michael Markowitz and Roger Schlafly
- Trans. Amer. Math. Soc. 276 (1983), 133-135
- DOI: https://doi.org/10.1090/S0002-9947-1983-0684497-2
- PDF | Request permission
Abstract:
Let ${M^{2n - 1}}(n \geqslant 3)$ be a strictly pseudoconvex abstract ${\text {CR}}$-hypersurface ${\text {CR}}$-immersed in the unit sphere in ${{\mathbf {C}}^N}$. We show that the pseudoconformal connection induced on $M$ by the standard flat connection agrees with the intrinsic normal connection of Cartan-Chern-Tanaka if and only if $M$ is pseudoconformally flat. In this case $M$ is a piece of the transverse intersection of ${S^{2N - 1}}$ with a complex $n$-plane in ${{\mathbf {C}}^N}$.References
- S. S. Chern, Sur la possibilité de plonger un espace à connexion projective donné dans un espace projectif, Bull. Sci. Math. 61 (1937), 234-243; also in Selected Papers, Springer-Verlag, New York, 1978.
- S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219–271. MR 425155, DOI 10.1007/BF02392146
- Michael J. Markowitz, CR-hypersurfaces in a space with a pseudoconformal connection, Trans. Amer. Math. Soc. 276 (1983), no. 1, 117–132. MR 684496, DOI 10.1090/S0002-9947-1983-0684496-0 —, The local imbedding problem for conformal connections (to appear).
- Takushiro Ochiai, Geometry associated with semisimple flat homogeneous spaces, Trans. Amer. Math. Soc. 152 (1970), 159–193. MR 284936, DOI 10.1090/S0002-9947-1970-0284936-6
- Walter Rudin, Function theory in the unit ball of $\textbf {C}^{n}$, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594
- Noboru Tanaka, On generalized graded Lie algebras and geometric structures. I, J. Math. Soc. Japan 19 (1967), 215–254. MR 221418, DOI 10.2969/jmsj/01920215
- S. M. Webster, On mapping an $n$-ball into an $(n+1)$-ball in complex spaces, Pacific J. Math. 81 (1979), no. 1, 267–272. MR 543749
- S. M. Webster, The rigidity of C-R hypersurfaces in a sphere, Indiana Univ. Math. J. 28 (1979), no. 3, 405–416. MR 529673, DOI 10.1512/iumj.1979.28.28027
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 276 (1983), 133-135
- MSC: Primary 32F25; Secondary 53B15
- DOI: https://doi.org/10.1090/S0002-9947-1983-0684497-2
- MathSciNet review: 684497