Unital $l$-prime lattice-ordered rings with polynomial constraints are domains
HTML articles powered by AMS MathViewer
- by Stuart A. Steinberg
- Trans. Amer. Math. Soc. 276 (1983), 145-164
- DOI: https://doi.org/10.1090/S0002-9947-1983-0684499-6
- PDF | Request permission
Abstract:
It is shown that a unital lattice-ordered ring in which the square of every element is positive must be a domain provided the product of two nonzero $l$-ideals is nonzero. More generally, the same conclusion follows if the condition ${a^2} \geqslant 0$ is replaced by $p(a) \geqslant 0$ for suitable polynomials $p(x)$; and if it is replaced by $f(a,b) \geqslant 0$ for suitable polynomials $f(x,y)$ one gets an $l$-domain. It is also shown that if $a \wedge b = 0$ in a unital lattice-ordered algebra which satisfies these constraints, then the $l$-ideals generated by $ab$ and $ba$ are identical.References
- Alain Bigard, Groupes archimédiens et hyper-archimédiens, Séminaire P. Dubreil, M.-L. Dubreil-Jacotin, L. Lesieur et G. Pisot: 1967/68, Algèbre et Théorie des Nombres, Fasc. 1-2, Secrétariat mathématique, Paris, 1969, pp. Exp. 2, 13 (French). MR 0250950
- Alain Bigard, Klaus Keimel, and Samuel Wolfenstein, Groupes et anneaux réticulés, Lecture Notes in Mathematics, Vol. 608, Springer-Verlag, Berlin-New York, 1977 (French). MR 0552653, DOI 10.1007/BFb0067004 G. Birkhoff, Lattice theory, 3rd ed., Amer. Math. Soc. Colloq. Publ., vol. 25, Amer. Math. Soc, Providence, R.I., 1968.
- Garrett Birkhoff and R. S. Pierce, Lattice-ordered rings, An. Acad. Brasil. Ci. 28 (1956), 41–69. MR 80099
- J. E. Diem, A radical for lattice-ordered rings, Pacific J. Math. 25 (1968), 71–82. MR 227068, DOI 10.2140/pjm.1968.25.71
- L. Fuchs, Partially ordered algebraic systems, Pergamon Press, Oxford-London-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass.-Palo Alto, Calif.-London, 1963. MR 0171864
- Melvin Henriksen and J. R. Isbell, Lattice-ordered rings and function rings, Pacific J. Math. 12 (1962), 533–565. MR 153709, DOI 10.2140/pjm.1962.12.533
- I. N. Herstein, Noncommutative rings, The Carus Mathematical Monographs, No. 15, Mathematical Association of America; distributed by John Wiley & Sons, Inc., New York, 1968. MR 0227205
- D. G. Johnson, A structure theory for a class of lattice-ordered rings, Acta Math. 104 (1960), 163–215. MR 125141, DOI 10.1007/BF02546389
- R. S. Pierce, Radicals in function rings, Duke Math. J. 23 (1956), 253–261. MR 78958, DOI 10.1215/S0012-7094-56-02323-7 M. A. Shatalova, ${l_A}$ and ${l_I}$ rings, Siberian Math. J. 7 (1966), 1084-1094.
- H. J. Shyr and T. M. Viswanathan, On the radicals of lattice-ordered rings, Pacific J. Math. 54 (1974), no. 1, 257–260. MR 376482, DOI 10.2140/pjm.1974.54.257
- Stuart A. Steinberg, Finitely-valued $f$-modules, Pacific J. Math. 40 (1972), 723–737. MR 306078, DOI 10.2140/pjm.1972.40.723
- Stuart A. Steinberg, Identities and nilpotent elements in lattice-ordered rings, Ring theory (Proc. Conf., Ohio Univ., Athens, Ohio, 1976) Lecture Notes in Pure and Appl. Math., Vol. 25, Dekker, New York, 1977, pp. 191–212. MR 0491403
- Stuart A. Steinberg, On lattice-ordered rings in which the square of every element is positive, J. Austral. Math. Soc. Ser. A 22 (1976), no. 3, 362–370. MR 427198, DOI 10.1017/s1446788700014804
- Stuart A. Steinberg, Examples of lattice-ordered rings, J. Algebra 72 (1981), no. 1, 223–236. MR 634624, DOI 10.1016/0021-8693(81)90319-7
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 276 (1983), 145-164
- MSC: Primary 16A86; Secondary 06A12, 06F25
- DOI: https://doi.org/10.1090/S0002-9947-1983-0684499-6
- MathSciNet review: 684499