## $\textrm {SL}(2, \textbf {C})$ actions on compact Kaehler manifolds

HTML articles powered by AMS MathViewer

- by James B. Carrell and Andrew John Sommese PDF
- Trans. Amer. Math. Soc.
**276**(1983), 165-179 Request permission

## Abstract:

Whenever $G = SL(2,C)$ acts holomorphically on a compact Kaehler manifold $X$, the maximal torus $T$ of $G$ has fixed points. Consequently, $X$ has associated Bialynicki-Birula plus and minus decompositions. In this paper we study the interplay between the Bialynicki-Birula decompositions and the $G$-action. A representative result is that the Borel subgroup of upper (resp. lower) triangular matrices in $G$ preserves the plus (resp. minus) decomposition and that each cell in the plus (resp. minus) decomposition fibres $G$-equivariantly over a component of ${X^T}$. We give some applications; e.g. we classify all compact Kaehler manifolds $X$ admitting a $G$-action with no three dimensional orbits. In particular we show that if $X$ is projective and has no three dimensional orbit, and if $\text {Pic}(X) \cong {\mathbf {Z}}$, then $X = C{{\mathbf {P}}^n}$. We also show that if $X$ admits a holomorphic vector field with unirational zero set, and if $\operatorname {Aut}_0(X)$ is reductive, then $X$ is unirational.## References

- A. Białynicki-Birula,
*Some theorems on actions of algebraic groups*, Ann. of Math. (2)**98**(1973), 480–497. MR**366940**, DOI 10.2307/1970915 - A. Białynicki-Birula,
*On action of $\textrm {SL}(2)$ on complete algebraic varieties*, Pacific J. Math.**86**(1980), no. 1, 53–58. MR**586868**, DOI 10.2140/pjm.1980.86.53
A. Borel, - James B. Carrell and Andrew John Sommese,
*$\textbf {C}^{\ast }$-actions*, Math. Scand.**43**(1978/79), no. 1, 49–59. MR**523824**, DOI 10.7146/math.scand.a-11762 - James B. Carrell and Andrew John Sommese,
*Some topological aspects of $\textbf {C}^{\ast }$ actions on compact Kaehler manifolds*, Comment. Math. Helv.**54**(1979), no. 4, 567–582. MR**552677**, DOI 10.1007/BF02566293
—, - Akira Fujiki,
*On automorphism groups of compact Kähler manifolds*, Invent. Math.**44**(1978), no. 3, 225–258. MR**481142**, DOI 10.1007/BF01403162 - Takao Fujita,
*On the hyperplane section principle of Lefschetz*, J. Math. Soc. Japan**32**(1980), no. 1, 153–169. MR**554521**, DOI 10.2969/jmsj/03210153 - Robin Hartshorne,
*Algebraic geometry*, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR**0463157**, DOI 10.1007/978-1-4757-3849-0
H. Hironaka, - G. Horrocks,
*Fixed point schemes of additive group actions*, Topology**8**(1969), 233–242. MR**244261**, DOI 10.1016/0040-9383(69)90013-5 - David I. Lieberman,
*Compactness of the Chow scheme: applications to automorphisms and deformations of Kähler manifolds*, Fonctions de plusieurs variables complexes, III (Sém. François Norguet, 1975–1977) Lecture Notes in Math., vol. 670, Springer, Berlin, 1978, pp. 140–186. MR**521918** - Toshiki Mabuchi,
*On the classification of essentially effective $\textrm {SL}(2;\textbf {C})$ $\times \textrm {SL}(2;\textbf {C})$-actions on algebraic threefolds*, Osaka Math. J.**16**(1979), no. 3, 727–744. MR**551585** - Shigefumi Mori and Hideyasu Sumihiro,
*On Hartshorne’s conjecture*, J. Math. Kyoto Univ.**18**(1978), no. 3, 523–533. MR**509496**, DOI 10.1215/kjm/1250522508 - R. W. Richardson Jr.,
*The variation of isotropy subalgebras for analytic transformation groups*, Math. Ann.**204**(1973), 83–92. MR**377129**, DOI 10.1007/BF01431491 - Andrew John Sommese,
*Extension theorems for reductive group actions on compact Kaehler manifolds*, Math. Ann.**218**(1975), no. 2, 107–116. MR**393561**, DOI 10.1007/BF01370814 - Andrew John Sommese,
*On manifolds that cannot be ample divisors*, Math. Ann.**221**(1976), no. 1, 55–72. MR**404703**, DOI 10.1007/BF01434964

*Seminar on transformations*, Ann. of Math. Studies, no. 46, Princeton Univ. Press, Princeton, N.J., 1961. J. B. Carrell, and R. M. Goresky,

*On the homology of projective varieties with*$C^{\ast }$

*action*, preprint.

*Generalization of a theorem of Horrocks*, preprint.

*Bimeromorphic smoothing of a complex analytic space*, Math. Inst. Warwick Univ., England, 1971.

## Additional Information

- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**276**(1983), 165-179 - MSC: Primary 32M05; Secondary 32C10, 32G05
- DOI: https://doi.org/10.1090/S0002-9947-1983-0684500-X
- MathSciNet review: 684500