A geometric interpretation of the Chern classes
HTML articles powered by AMS MathViewer
- by R. Sivera Villanueva
- Trans. Amer. Math. Soc. 276 (1983), 193-200
- DOI: https://doi.org/10.1090/S0002-9947-1983-0684502-3
- PDF | Request permission
Abstract:
Let ${f_\xi }: M \to BU$ be a classifying map of the stable complex bundle $\xi$ over the weakly complex manifold $M$. If $\tau$ is the stable right homotopical inverse of the infinite loop spaces map $\eta :QBU(1) \to BU$, we define $f_\xi ’ = \tau \cdot {f_\xi }$ and we prove that the Chern classes ${c_k}(\xi )$ are $f_\xi ^{\prime \ast }(h_k^{\ast }(t_k))$, where ${h_k}$ is given by the stable splitting of $QBU(1)$ and ${t_k}$ is the Thom class of the bundle ${\gamma ^{(k)}} = E{\Sigma _k}{X_{{\Sigma _k}}}{\gamma ^k}$. Also, we associate to $f’$ an immersion $g:N \to M$ and we prove that ${c_k}(\xi )$ is the dual of the image of the fundamental class of the $k$-tuple points manifold of the immersion $g,g_k^{\ast }([{N_k}])$.References
- J. C. Becker, Characteristic classes and $K$-theory, Algebraic and geometrical methods in topology (Conf. Topological Methods in Algebraic Topology, State Univ. New York, Binghamton, N.Y., 1973), Lecture Notes in Math., Vol. 428, Springer, Berlin, 1974, pp. 132–143. MR 0377877
- Theodor Bröcker and Tammo tom Dieck, Kobordismentheorie, Lecture Notes in Mathematics, Vol. 178, Springer-Verlag, Berlin-New York, 1970 (German). MR 0275446, DOI 10.1007/978-3-662-16378-8
- Frederick R. Cohen, Thomas J. Lada, and J. Peter May, The homology of iterated loop spaces, Lecture Notes in Mathematics, Vol. 533, Springer-Verlag, Berlin-New York, 1976. MR 0436146, DOI 10.1007/BFb0080464
- F. R. Cohen, J. P. May, and L. R. Taylor, Splitting of certain spaces $CX$, Math. Proc. Cambridge Philos. Soc. 84 (1978), no. 3, 465–496. MR 503007, DOI 10.1017/S0305004100055298
- Morris W. Hirsch, Differential topology, Graduate Texts in Mathematics, No. 33, Springer-Verlag, New York-Heidelberg, 1976. MR 0448362, DOI 10.1007/978-1-4684-9449-5
- I. M. James, Reduced product spaces, Ann. of Math. (2) 62 (1955), 170–197. MR 73181, DOI 10.2307/2007107
- Ulrich Koschorke and Brian Sanderson, Self-intersections and higher Hopf invariants, Topology 17 (1978), no. 3, 283–290. MR 508891, DOI 10.1016/0040-9383(78)90032-0 J. Mather, Notes on topological stability, Harvard University, 1970.
- J. M. Boardman and R. M. Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics, Vol. 347, Springer-Verlag, Berlin-New York, 1973. MR 0420609, DOI 10.1007/BFb0068547
- J. Peter May, $E_{\infty }$ ring spaces and $E_{\infty }$ ring spectra, Lecture Notes in Mathematics, Vol. 577, Springer-Verlag, Berlin-New York, 1977. With contributions by Frank Quinn, Nigel Ray, and Jørgen Tornehave. MR 0494077
- Goro Nishida, The nilpotency of elements of the stable homotopy groups of spheres, J. Math. Soc. Japan 25 (1973), 707–732. MR 341485, DOI 10.2969/jmsj/02540707
- Daniel Quillen, Elementary proofs of some results of cobordism theory using Steenrod operations, Advances in Math. 7 (1971), 29–56 (1971). MR 290382, DOI 10.1016/0001-8708(71)90041-7
- Brian J. Sanderson, The geometry of Mahowald orientations, Algebraic topology, Aarhus 1978 (Proc. Sympos., Univ. Aarhus, Aarhus, 1978), Lecture Notes in Math., vol. 763, Springer, Berlin, 1979, pp. 152–174. MR 561221 R. Sivera, The geometry of the map $\eta :QBU(1) \to BU$, Ph. D. Thesis, University of Warwick, 1981.
- Victor P. Snaith, Algebraic cobordism and $K$-theory, Mem. Amer. Math. Soc. 21 (1979), no. 221, vii+152. MR 539791, DOI 10.1090/memo/0221
- Victor Snaith, Localized stable homotopy of some classifying spaces, Math. Proc. Cambridge Philos. Soc. 89 (1981), no. 2, 325–330. MR 600247, DOI 10.1017/S0305004100058205
- Robert M. Switzer, Algebraic topology—homotopy and homology, Die Grundlehren der mathematischen Wissenschaften, Band 212, Springer-Verlag, New York-Heidelberg, 1975. MR 0385836, DOI 10.1007/978-3-642-61923-6
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 276 (1983), 193-200
- MSC: Primary 57R20; Secondary 55P47
- DOI: https://doi.org/10.1090/S0002-9947-1983-0684502-3
- MathSciNet review: 684502