A general sufficiency theorem for nonsmooth nonlinear programming
HTML articles powered by AMS MathViewer
- by R. W. Chaney
- Trans. Amer. Math. Soc. 276 (1983), 235-245
- DOI: https://doi.org/10.1090/S0002-9947-1983-0684505-9
- PDF | Request permission
Abstract:
Second-order conditions are given which are sufficient to guarantee that a given point be a local minimizer for a real-valued locally Lipschitzian function over a closed set in $n$-dimensional real Euclidean space. These conditions are expressed in terms of the generalized gradients of Clarke. The conditions provide a very general and unified framework into which many previous first- and second-order theorems fit.References
- Robin W. Chaney, Second-order optimality conditions for a class of nonlinear programming problems, J. Math. Anal. Appl. 76 (1980), no. 2, 516–534. MR 587359, DOI 10.1016/0022-247X(80)90046-3
- R. W. Chaney, Second-order sufficiency conditions for nondifferentiable programming problems, SIAM J. Control Optim. 20 (1982), no. 1, 20–33. MR 642177, DOI 10.1137/0320004
- R. W. Chaney, On sufficient conditions in nonsmooth optimization, Math. Oper. Res. 7 (1982), no. 3, 463–475. MR 667935, DOI 10.1287/moor.7.3.463
- Frank H. Clarke, A new approach to Lagrange multipliers, Math. Oper. Res. 1 (1976), no. 2, 165–174. MR 414104, DOI 10.1287/moor.1.2.165
- Frank H. Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc. 205 (1975), 247–262. MR 367131, DOI 10.1090/S0002-9947-1975-0367131-6
- Frank H. Clarke, Generalized gradients of Lipschitz functionals, Adv. in Math. 40 (1981), no. 1, 52–67. MR 616160, DOI 10.1016/0001-8708(81)90032-3 —, Nonsmooth analysis and optimization (forthcoming).
- R. Fletcher and G. A. Watson, First- and second-order conditions for a class of nondifferentiable optimization problems, Math. Programming 18 (1980), no. 3, 291–307. MR 571992, DOI 10.1007/BF01588325
- Magnus R. Hestenes, Calculus of variations and optimal control theory, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR 0203540
- Magnus R. Hestenes, Optimization theory, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1975. The finite dimensional case. MR 0461238
- J.-B. Hiriart-Urruty, Refinements of necessary optimality conditions in nondifferentiable programming. I, Appl. Math. Optim. 5 (1979), no. 1, 63–82. MR 526428, DOI 10.1007/BF01442544
- A. D. Ioffe, Necessary and sufficient conditions for a local minimum. I. A reduction theorem and first order conditions, SIAM J. Control Optim. 17 (1979), no. 2, 245–250. MR 525025, DOI 10.1137/0317019
- G. Lebourg, Generic differentiability of Lipschitzian functions, Trans. Amer. Math. Soc. 256 (1979), 125–144. MR 546911, DOI 10.1090/S0002-9947-1979-0546911-1 —, Valeur moyenne pour gradient généralisé, C. R. Acad. Sci. Paris Ser. A 281 (1975), 795-797.
- O. L. Mangasarian and S. Fromovitz, The Fritz John necessary optimality conditions in the presence of equality and inequality constraints, J. Math. Anal. Appl. 17 (1967), 37–47. MR 207448, DOI 10.1016/0022-247X(67)90163-1
- Robert Mifflin, Semismooth and semiconvex functions in constrained optimization, SIAM J. Control Optim. 15 (1977), no. 6, 959–972. MR 461556, DOI 10.1137/0315061
- J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, New York-London, 1970. MR 0273810
- R. T. Rockafellar, Clarke’s tangent cones and the boundaries of closed sets in $\textbf {R}^{n}$, Nonlinear Anal. 3 (1979), no. 1, 145–154 (1978). MR 520481, DOI 10.1016/0362-546X(79)90044-0 —, Convex analysis, Princeton Univ. Press, Princeton, N.J., 1970.
- R. T. Rockafellar, Directionally Lipschitzian functions and subdifferential calculus, Proc. London Math. Soc. (3) 39 (1979), no. 2, 331–355. MR 548983, DOI 10.1112/plms/s3-39.2.331
- R. T. Rockafellar, Generalized directional derivatives and subgradients of nonconvex functions, Canadian J. Math. 32 (1980), no. 2, 257–280. MR 571922, DOI 10.4153/CJM-1980-020-7
- R. T. Rockafellar, Lagrange multipliers and subderivatives of optimal value functions in nonlinear programming, Math. Programming Stud. 17 (1982), 28–66. MR 654690, DOI 10.1007/bfb0120958
- R. Tyrrell Rockafellar, La théorie des sous-gradients et ses applications à l’optimisation, Collection “Chaire Aisenstadt”, Presses de l’Université de Montréal, Montreal, Que., 1979 (French). Fonctions convexes et non convexes; Translated from the English by Godeliève Vanderstraeten-Tilquin. MR 531033
- Jonathan E. Spingarn, Submonotone subdifferentials of Lipschitz functions, Trans. Amer. Math. Soc. 264 (1981), no. 1, 77–89. MR 597868, DOI 10.1090/S0002-9947-1981-0597868-8
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 276 (1983), 235-245
- MSC: Primary 90C30
- DOI: https://doi.org/10.1090/S0002-9947-1983-0684505-9
- MathSciNet review: 684505