## A general sufficiency theorem for nonsmooth nonlinear programming

HTML articles powered by AMS MathViewer

- by R. W. Chaney PDF
- Trans. Amer. Math. Soc.
**276**(1983), 235-245 Request permission

## Abstract:

Second-order conditions are given which are sufficient to guarantee that a given point be a local minimizer for a real-valued locally Lipschitzian function over a closed set in $n$-dimensional real Euclidean space. These conditions are expressed in terms of the generalized gradients of Clarke. The conditions provide a very general and unified framework into which many previous first- and second-order theorems fit.## References

- Robin W. Chaney,
*Second-order optimality conditions for a class of nonlinear programming problems*, J. Math. Anal. Appl.**76**(1980), no. 2, 516–534. MR**587359**, DOI 10.1016/0022-247X(80)90046-3 - R. W. Chaney,
*Second-order sufficiency conditions for nondifferentiable programming problems*, SIAM J. Control Optim.**20**(1982), no. 1, 20–33. MR**642177**, DOI 10.1137/0320004 - R. W. Chaney,
*On sufficient conditions in nonsmooth optimization*, Math. Oper. Res.**7**(1982), no. 3, 463–475. MR**667935**, DOI 10.1287/moor.7.3.463 - Frank H. Clarke,
*A new approach to Lagrange multipliers*, Math. Oper. Res.**1**(1976), no. 2, 165–174. MR**414104**, DOI 10.1287/moor.1.2.165 - Frank H. Clarke,
*Generalized gradients and applications*, Trans. Amer. Math. Soc.**205**(1975), 247–262. MR**367131**, DOI 10.1090/S0002-9947-1975-0367131-6 - Frank H. Clarke,
*Generalized gradients of Lipschitz functionals*, Adv. in Math.**40**(1981), no. 1, 52–67. MR**616160**, DOI 10.1016/0001-8708(81)90032-3
—, - R. Fletcher and G. A. Watson,
*First- and second-order conditions for a class of nondifferentiable optimization problems*, Math. Programming**18**(1980), no. 3, 291–307. MR**571992**, DOI 10.1007/BF01588325 - Magnus R. Hestenes,
*Calculus of variations and optimal control theory*, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR**0203540** - Magnus R. Hestenes,
*Optimization theory*, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1975. The finite dimensional case. MR**0461238** - J.-B. Hiriart-Urruty,
*Refinements of necessary optimality conditions in nondifferentiable programming. I*, Appl. Math. Optim.**5**(1979), no. 1, 63–82. MR**526428**, DOI 10.1007/BF01442544 - A. D. Ioffe,
*Necessary and sufficient conditions for a local minimum. I. A reduction theorem and first order conditions*, SIAM J. Control Optim.**17**(1979), no. 2, 245–250. MR**525025**, DOI 10.1137/0317019 - G. Lebourg,
*Generic differentiability of Lipschitzian functions*, Trans. Amer. Math. Soc.**256**(1979), 125–144. MR**546911**, DOI 10.1090/S0002-9947-1979-0546911-1
—, - O. L. Mangasarian and S. Fromovitz,
*The Fritz John necessary optimality conditions in the presence of equality and inequality constraints*, J. Math. Anal. Appl.**17**(1967), 37–47. MR**207448**, DOI 10.1016/0022-247X(67)90163-1 - Robert Mifflin,
*Semismooth and semiconvex functions in constrained optimization*, SIAM J. Control Optim.**15**(1977), no. 6, 959–972. MR**461556**, DOI 10.1137/0315061 - J. M. Ortega and W. C. Rheinboldt,
*Iterative solution of nonlinear equations in several variables*, Academic Press, New York-London, 1970. MR**0273810** - R. T. Rockafellar,
*Clarke’s tangent cones and the boundaries of closed sets in $\textbf {R}^{n}$*, Nonlinear Anal.**3**(1979), no. 1, 145–154 (1978). MR**520481**, DOI 10.1016/0362-546X(79)90044-0
—, - R. T. Rockafellar,
*Directionally Lipschitzian functions and subdifferential calculus*, Proc. London Math. Soc. (3)**39**(1979), no. 2, 331–355. MR**548983**, DOI 10.1112/plms/s3-39.2.331 - R. T. Rockafellar,
*Generalized directional derivatives and subgradients of nonconvex functions*, Canadian J. Math.**32**(1980), no. 2, 257–280. MR**571922**, DOI 10.4153/CJM-1980-020-7 - R. T. Rockafellar,
*Lagrange multipliers and subderivatives of optimal value functions in nonlinear programming*, Math. Programming Stud.**17**(1982), 28–66. MR**654690**, DOI 10.1007/bfb0120958 - R. Tyrrell Rockafellar,
*La théorie des sous-gradients et ses applications à l’optimisation*, Collection “Chaire Aisenstadt”, Presses de l’Université de Montréal, Montreal, Que., 1979 (French). Fonctions convexes et non convexes; Translated from the English by Godeliève Vanderstraeten-Tilquin. MR**531033** - Jonathan E. Spingarn,
*Submonotone subdifferentials of Lipschitz functions*, Trans. Amer. Math. Soc.**264**(1981), no. 1, 77–89. MR**597868**, DOI 10.1090/S0002-9947-1981-0597868-8

*Nonsmooth analysis and optimization*(forthcoming).

*Valeur moyenne pour gradient généralisé*, C. R. Acad. Sci. Paris Ser. A

**281**(1975), 795-797.

*Convex analysis*, Princeton Univ. Press, Princeton, N.J., 1970.

## Additional Information

- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**276**(1983), 235-245 - MSC: Primary 90C30
- DOI: https://doi.org/10.1090/S0002-9947-1983-0684505-9
- MathSciNet review: 684505