A necessary and sufficient condition for the asymptotic version of Ahlfors’ distortion property
HTML articles powered by AMS MathViewer
- by Burton Rodin and S. E. Warschawski
- Trans. Amer. Math. Soc. 276 (1983), 281-288
- DOI: https://doi.org/10.1090/S0002-9947-1983-0684508-4
- PDF | Request permission
Abstract:
Let $f$ be a conformal map of $R = \{w = u + iv \in {\mathbf {C}}|{\varphi _0}(u) < v < {\varphi _1}(u)\}$ onto $S = \{z = x + iy \in {\mathbf {C}}|0 < y < 1\}$ where the ${\varphi _j} \in {C^0}( - \infty ,\infty )$ and $\operatorname {Re} f(w) \to \pm \infty$ as $\operatorname {Re} w \to \pm \infty$. There are well-known results giving conditions on $R$ sufficient for the distortion property $\operatorname {Re} f(u + iv) = \int _0^u ({\varphi _1} - {\varphi _0})^{- 1}du + {\text {const}}. + o(1)$, where $o(1) \to 0$ as $u \to + \infty$. In this paper the authors give a condition on $R$ which is both necessary and sufficient for $f$ to have this property.References
- L. V. Ahlfors, Untersuchungen zur Theorie der konformen Abbildungen und der ganzen Funktionen, Ann. Acad. Sci. Fenn. Ser. AI Math. 9 (1930), 1-40.
- B. G. Eke, Remarks on Ahlfors’ distortion theorem, J. Analyse Math. 19 (1967), 97–134. MR 215971, DOI 10.1007/BF02788711
- Jacqueline Lelong-Ferrand, Représentation conforme et transformations à intégrale de Dirichlet bornée, Gauthier-Villars, Paris, 1955 (French). MR 0069895
- James A. Jenkins and Kôtaro Oikawa, On results of Ahlfors and Hayman, Illinois J. Math. 15 (1971), 664–671. MR 296271
- James A. Jenkins and Kôtaro Oikawa, On Ahlfors’ “second fundamental inequality”, Proc. Amer. Math. Soc. 62 (1977), no. 2, 266–270. MR 437732, DOI 10.1090/S0002-9939-1977-0437732-2
- Burton Rodin, The method of extremal length, Bull. Amer. Math. Soc. 80 (1974), 587–606. MR 361048, DOI 10.1090/S0002-9904-1974-13517-2
- Burton Rodin and S. E. Warschawski, On conformal mapping of $L$-strips, J. London Math. Soc. (2) 11 (1975), no. 3, 301–307. MR 399437, DOI 10.1112/jlms/s2-11.3.301
- Burton Rodin and S. E. Warschawski, Extremal length and the boundary behavior of conformal mappings, Ann. Acad. Sci. Fenn. Ser. A I Math. 2 (1976), 467–500. MR 0466516, DOI 10.5186/aasfm.1976.0231
- Burton Rodin and S. E. Warschawski, Extremal length and univalent functions. III. Consequences of the Ahlfors distortion property, Bull. Inst. Math. Acad. Sinica 6 (1978), no. 2, 583–597. MR 528670
- Burton Rodin and Stefan E. Warschawski, Extremal length and univalent functions. II. Integral estimates of strip mappings, J. Math. Soc. Japan 31 (1979), no. 1, 87–99. MR 519038, DOI 10.2969/jmsj/03110087
- S. E. Warschawski, On conformal mapping of infinite strips, Trans. Amer. Math. Soc. 51 (1942), 280–335. MR 6583, DOI 10.1090/S0002-9947-1942-0006583-6
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 276 (1983), 281-288
- MSC: Primary 30C20; Secondary 30C35
- DOI: https://doi.org/10.1090/S0002-9947-1983-0684508-4
- MathSciNet review: 684508