Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society, the Transactions of the American Mathematical Society (TRAN) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.43.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

The approximation property for some $5$-dimensional Henselian rings
HTML articles powered by AMS MathViewer

by Joseph Becker, J. Denef and L. Lipshitz PDF
Trans. Amer. Math. Soc. 276 (1983), 301-309 Request permission

Abstract:

Let $k$ be a field of characteristic $0$, $k[[{X_1},{X_2}]]$ the ring of formal power series and $R = k[[{X_1},{X_2}]]{[{X_3},{X_4},{X_5}]^ \sim }$ the algebraic closure of $k[[{X_1},{X_2}]][{X_3},{X_4},{X_5}]$ in $k[[{X_1},\ldots ,{X_5}]]$. It is shown that $R$ has the Approximation Property.
References
  • M. Artin, On the solutions of analytic equations, Invent. Math. 5 (1968), 277–291. MR 232018, DOI 10.1007/BF01389777
  • M. Artin, Algebraic approximation of structures over complete local rings, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 23–58. MR 268188
  • M. Artin, Construction techniques for algebraic spaces, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 419–423. MR 0427316
  • —, Lectures on deformations of singularities, Tata Institute Notes 54, Bombay, 1976.
  • Joseph Becker, A counterexample to Artin approximation with respect to subrings, Math. Ann. 230 (1977), no. 2, 195–196. MR 480508, DOI 10.1007/BF01370664
  • Joseph Becker, J. Denef, L. Lipshitz, and L. van den Dries, Ultraproducts and approximations in local rings. I, Invent. Math. 51 (1979), no. 2, 189–203. MR 528023, DOI 10.1007/BF01390228
  • C. C. Chang and H. J. Keisler, Model theory, North-Holland, Amsterdam, 1973.
  • J. Denef and L. Lipshitz, Ultraproducts and approximation in local rings. II, Math. Ann. 253 (1980), no. 1, 1–28. MR 594530, DOI 10.1007/BF01457817
  • Renée Elkik, Solutions d’équations à coefficients dans un anneau hensélien, Ann. Sci. École Norm. Sup. (4) 6 (1973), 553–603 (1974) (French). MR 345966
  • A. Grothendieck, Eléments de géométrie algébrique. IV, Inst. Hautes Études Sci. Publ. Math. 24 (1965); 32 (1967).
  • Marvin J. Greenberg, Rational points in Henselian discrete valuation rings, Inst. Hautes Études Sci. Publ. Math. 31 (1966), 59–64. MR 207700
  • A. M. Gabrièlov, The formal relations between analytic functions, Funkcional. Anal. i Priložen. 5 (1971), no. 4, 64–65 (Russian). MR 0302930
  • André Néron, Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Inst. Hautes Études Sci. Publ. Math. 21 (1964), 128 (French). MR 179172, DOI 10.1007/bf02684271
  • Dorin Popescu, A remark on two-dimensional local rings with the property of approximation, Math. Z. 173 (1980), no. 3, 235–240. MR 592372, DOI 10.1007/BF01159662
  • Gerhard Pfister and Dorin Popescu, On three-dimensional local rings with the property of approximation, Rev. Roumaine Math. Pures Appl. 26 (1981), no. 2, 301–307. MR 616044
  • Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0120249
Similar Articles
Additional Information
  • © Copyright 1983 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 276 (1983), 301-309
  • MSC: Primary 13J15; Secondary 13D10, 14B12, 14D15
  • DOI: https://doi.org/10.1090/S0002-9947-1983-0684510-2
  • MathSciNet review: 684510