Sufficient conditions for smoothing codimension one foliations
HTML articles powered by AMS MathViewer
- by Christopher Ennis
- Trans. Amer. Math. Soc. 276 (1983), 311-322
- DOI: https://doi.org/10.1090/S0002-9947-1983-0684511-4
- PDF | Request permission
Abstract:
Let $M$ be a compact ${C^\infty }$ manifold. Let $X$ be a ${C^0}$ nonsingular vector field on $M$, having unique integral curves $(p,t)$ through $p \in M$. For $f: M \to {\mathbf {R}}$ continuous, call $\left . Xf(p) = df(p,t)/dt\right |_{t = 0}$ whenever defined. Similarly, call ${X^k}f(p)=X(X^{k-1}f)(p)$. For $0 \leqslant r < k$, a ${C^r}$ foliation $\mathcal {F}$ of $M$ is said to be ${C^k}$ smoothable if there exist a ${C^k}$ foliation $\mathcal {G}$, which ${C^r}$ approximates $\mathcal {F}$, and a homeomorphism $h:M \to M$ such that $h$ takes leaves of $\mathcal {F}$ onto leaves of $\mathcal {G}$. Definition. A transversely oriented Lyapunov foliation is a pair $(\mathcal {F},X)$ consisting of a ${C^0}$ codimension one foliation $\mathcal {F}$ of $M$ and a ${C^0}$ nonsingular, uniquely integrable vector field $X$ on $M$, such that there is a covering of $M$ by neighborhoods $\{{W_i}\}$, $0 \leqslant i \leqslant N$, on which $\mathcal {F}$ is described as level sets of continuous functions ${f_i}:{W_i} \to {\mathbf {R}}$ for which $X{f_i}(p)$ is continuous and strictly positive. We prove the following theorems. Theorem 1. Every ${C^0}$ transversely oriented Lyapunov foliation $(\mathcal {F},X)$ is ${C^1}$ smoothable to a ${C^1}$ transversely oriented Lyapunov foliation $(\mathcal {G},X)$. Theorem 2. If $(\mathcal {F},X)$ is a ${C^0}$ transversely oriented Lyapunov foliation, with $X \in {C^{k - 1}}$ and ${X^j}{f_i}(p)$ continuous for $1 \leqslant j \leqslant k$ and $0 \leqslant i \leqslant N$, then $(\mathcal {F},X)$ is ${C^k}$ smoothable to a ${C^k}$ transversely oriented Lyapunov foliation $(\mathcal {G},X)$. The proofs of the above theorems depend on a fairly deep result in analysis due to F. Wesley Wilson, Jr. With only elementary arguments we obtain the ${C^k}$ version of Theorem 1. Theorem 3. If $(\mathcal {F},X)$ is a ${C^{k - 1}}\;(k \geqslant 2)$ transversely oriented Lyapunov foliation, with $X \in {C^{k - 1}}$ and ${X^k}{f_i}(p)$ is continuous, then $(\mathcal {F},X)$ is ${C^k}$ smoothable to a ${C^k}$ transversely oriented Lyapunov foliation $(\mathcal {G},X)$.References
- A. Denjoy, Sur les courbes définies par les équations differentielles à la surface du tore, J. Math. Pures Appl. 11 (1932), 333-375.
C. Ennis, M. Hirsch and C. Pugh, Foliations that are not approximable by smoother ones, Report PAM-63, Center for Pure and Appl. Math., University of California, Berkeley, Calif., 1981.
- Jenny Harrison, Unsmoothable diffeomorphisms, Ann. of Math. (2) 102 (1975), no. 1, 85–94. MR 388458, DOI 10.2307/1970975 D. Hart, On the smoothness of generators for flows and foliations, Ph.D. Thesis, University of California, Berkeley, Calif., 1980.
- Arthur J. Schwartz, A generalization of a Poincaré-Bendixson theorem to closed two-dimensional manifolds, Amer. J. Math. 85 (1963), 453–458; errata: 85 (1963), 753. MR 0155061
- Dennis Sullivan, Hyperbolic geometry and homeomorphisms, Geometric topology (Proc. Georgia Topology Conf., Athens, Ga., 1977) Academic Press, New York-London, 1979, pp. 543–555. MR 537749
- F. Wesley Wilson Jr., Smoothing derivatives of functions and applications, Trans. Amer. Math. Soc. 139 (1969), 413–428. MR 251747, DOI 10.1090/S0002-9947-1969-0251747-9
- F. Wesley Wilson Jr., Implicit submanifolds, J. Math. Mech. 18 (1968/1969), 229–236. MR 0229252, DOI 10.1512/iumj.1969.18.18022
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 276 (1983), 311-322
- MSC: Primary 57R30; Secondary 57R10, 58F18
- DOI: https://doi.org/10.1090/S0002-9947-1983-0684511-4
- MathSciNet review: 684511