Branched coverings. I
HTML articles powered by AMS MathViewer
- by R. E. Stong
- Trans. Amer. Math. Soc. 276 (1983), 375-402
- DOI: https://doi.org/10.1090/S0002-9947-1983-0684516-3
- PDF | Request permission
Abstract:
This paper analyzes the possible cobordism classes $[M] - (\deg \;\phi )[N]$ for $\phi : M \to N$ a smooth branched covering of closed smooth manifolds. It is assumed that the branch set is a codimension $2$ submanifold. The results are a fairly complete description in the unoriented case, a partial description in the oriented case, and a detailed analysis of the case in which $N$ is a sphere.References
- M. F. Atiyah, Bordism and cobordism, Proc. Cambridge Philos. Soc. 57 (1961), 200–208. MR 126856, DOI 10.1017/s0305004100035064
- Israel Berstein and Allan L. Edmonds, The degree and branch set of a branced covering, Invent. Math. 45 (1978), no. 3, 213–220. MR 474261, DOI 10.1007/BF01403169
- Neal Brand, Necessary conditions for the existence of branched coverings, Invent. Math. 54 (1979), no. 1, 1–10. MR 549541, DOI 10.1007/BF01391172
- Neal Brand, Classifying spaces for branched coverings, Indiana Univ. Math. J. 29 (1980), no. 2, 229–248. MR 563208, DOI 10.1512/iumj.1980.29.29015
- J. Brillhart, J. Tonascia, and P. Weinberger, On the Fermat quotient, Computers in number theory (Proc. Sci. Res. Council Atlas Sympos. No. 2, Oxford, 1969) Academic Press, London, 1971, pp. 213–222. MR 0314736
- P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 33, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1964. MR 0176478
- Allan L. Edmonds, Orientability of fixed point sets, Proc. Amer. Math. Soc. 82 (1981), no. 1, 120–124. MR 603614, DOI 10.1090/S0002-9939-1981-0603614-7
- Akio Hattori, Genera of ramified coverings, Math. Ann. 195 (1972), 208–226. MR 290399, DOI 10.1007/BF01419595
- F. Hirzebruch, The signature of ramified coverings, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 253–265. MR 0258060
- Nicolaas H. Kuiper, The quotient space of $\textbf {C}P(2)$ by complex conjugation is the $4$-sphere, Math. Ann. 208 (1974), 175–177. MR 346817, DOI 10.1007/BF01432386
- Peter S. Landweber, Fixed point free conjugations on complex manifolds, Ann. of Math. (2) 86 (1967), 491–502. MR 220317, DOI 10.2307/1970612
- Chung N. Lee and Arthur G. Wasserman, Equivariant characteristic numbers, Proceedings of the Second Conference on Compact Transformation Groups (Univ. Massachusetts, Amherst, Mass., 1971) Lecture Notes in Math., Vol. 298, Springer, Berlin, 1972, pp. 191–216. MR 0365601
- Minoru Nakaoka, Homology of the infinite symmetric group, Ann. of Math. (2) 73 (1961), 229–257. MR 131874, DOI 10.2307/1970333
- Minoru Nakaoka, Note on cohomology algebras of symmetric groups, J. Math. Osaka City Univ. 13 (1962), 45–55. MR 154905
- H. L. Rosenzweig, Bordism of involutions on manifolds, Illinois J. Math. 16 (1972), 1–10. MR 290386
- R. E. Stong, Complex and oriented equivariant bordism, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969) Markham, Chicago, Ill., 1970, pp. 291–316. MR 0273644
- R. E. Stong, On fibering of cobordism classes, Trans. Amer. Math. Soc. 178 (1973), 431–447. MR 315733, DOI 10.1090/S0002-9947-1973-0315733-3
- C. T. C. Wall, Determination of the cobordism ring, Ann. of Math. (2) 72 (1960), 292–311. MR 120654, DOI 10.2307/1970136
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 276 (1983), 375-402
- MSC: Primary 57M12; Secondary 57N70
- DOI: https://doi.org/10.1090/S0002-9947-1983-0684516-3
- MathSciNet review: 684516