SOME CONJECTURES ON ELLIPTIC CURVES OVER CYCLOTOMIC FIELDS

RY

D. GOLDFELD AND C. VIOLA

ABSTRACT. We give conjectures for the mean values of Hasse-Weil type L-functions over cyclotomic fields. In view of the Birch-Swinnerton-Dyer conjectures, this translates to interesting arithmetic information.

1. In 1967 A. Weil [6] showed that if the Dirichlet series

$$L_1(s) = \sum_{n=1}^{\infty} a(n)n^{-s}, \qquad L_1(s, \chi) = \sum_{n=1}^{\infty} a(n)\chi(n)n^{-s} \quad (\chi \mod q)$$

satisfy the functional equations

(1)
$$(\sqrt{N}/2\pi)^{s} \Gamma(s)L_{1}(s) = w_{1}(\sqrt{N}/2\pi)^{k-s} \Gamma(k-s)L_{1}(k-s), \qquad |w_{1}| = 1,$$

$$(\sqrt{N}/2\pi q)^{s} \Gamma(s) L_{1}(s, \chi) = w_{\chi}(\sqrt{N}/2\pi q)^{k-s} \Gamma(k-s) L_{1}(k-s, \bar{\chi}),$$
(2)

(2)
$$w_{\chi} = w_{1}\varepsilon(q) \frac{\tau_{\chi}}{\tau_{\bar{\chi}}} \chi(-N), \qquad \tau_{\chi} = \sum_{\alpha=1}^{q} \chi(\alpha)e^{2\pi i \alpha/q},$$

for "sufficiently many" q such that (q, N) = 1 and all primitive characters χ mod q, where N and k are positive integers and ε is a primitive character mod N, then $f(z) = \sum_{n=1}^{\infty} a(n)e^{2\pi i nz}$ is a modular form with multiplier ε of weight k for the congruence subgroup

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{Z}, ad - bc = 1, c \equiv 0 \pmod{N} \right\}.$$

Our aim is to propose some conjectures on the asymptotic behaviour of the mean value

$$S(X; h) = \sum_{\substack{p \le X \\ p \equiv 1(h)}} \prod_{\substack{\chi \bmod p \\ \chi \downarrow p = \chi h}} L_1(k/2, \chi) \qquad (h \ge 2 \text{ a fixed integer})$$

where the sum is restricted to primes p, and χ_0 is the principal character mod p.

Let $L_h(s, \chi) = \sum_{n=1}^{\infty} a(n^h)\chi(n)n^{-s}$. If $L_1(s)$ satisfies (1) and (2), then we propose the following

Received by the editors June 12, 1981. 1980 Mathematics Subject Classification. Primary 12A70.

© 1983 American Mathematical Society 0002-9947/81/0000-0759/\$09.00

MAIN CONJECTURE. For h=2 ($\chi^2=\chi_0, \chi\neq\chi_0, \chi \bmod p$):

$$S(X; 2) = \sum_{p \leq X} L_1(k/2, \chi)$$

$$\sim \sum_{p \leq X} \frac{1 + w_1 \varepsilon(p) \chi(-N)}{\Gamma(k/2)} \cdot \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \Gamma(k/2+z) \left(\frac{\sqrt{N}}{2\pi}p\right)^z L_2(k+2z, \chi_0) \frac{dz}{z}.$$

For h > 2:

$$S(X; h) \sim \sum_{\substack{p \leq X \\ p \equiv 1(h)}} \frac{1 + (w_1 \varepsilon(p))^{\phi(h)}}{\Gamma(k/2)^{\phi(h)}} \cdot \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \Gamma(k/2+z)^{\phi(h)} \left(\frac{\sqrt{N}}{2\pi}p\right)^{\phi(h)z} H(z)^{\phi(h)/2} \frac{dz}{z} \quad (c > 0),$$

where

$$H(z) \equiv \sum_{n=1}^{\infty} \frac{a(n)^2 \chi_0(n)}{n^{k+2z}} + L_h(h(k/2 + z), \chi_0)^2.$$

The integrals in the above conjecture can be easily evaluated asymptotically by shifting the line of integration and computing the residues at z = 0. If we assume that $L_1(s)$ has an Euler product of the form

(3)
$$L_1(s) = \prod_{p \mid N} \left(1 - \frac{a(p)}{p^s}\right)^{-1} \cdot \prod_{p \mid N} \left(1 - \frac{\gamma_p}{p^s}\right)^{-1} \left(1 - \frac{\bar{\gamma}_p}{p^s}\right)^{-1},$$

with $|\gamma_p|^2 = p^{k-1}$ (see [1]), then we have the following

PROPOSITION. Assuming the Main Conjecture and the Euler product (3), it follows that

(i)
$$S(X; 2) \sim \frac{48\pi}{N} \prod_{p|N} (1 - p^{-2})^{-1} \cdot \langle f, f \rangle \cdot \frac{X}{\log X}$$

where

$$\langle f, f \rangle = \iint\limits_{\Gamma_0(N) \setminus H} \left| \sum_{n=1}^{\infty} a(n) e^{2\pi i n z} \right|^2 y^{k-2} dx dy$$

is the Petersson inner product of f with itself;

(ii) For h > 2,

$$S(X; h) \sim 2 \left(\frac{24\pi}{N} \prod_{b \mid N} \left(1 + p^{-1} \right)^{-1} \cdot \langle f, f \rangle \right)^{\phi(h)/2} \frac{X(\phi(h) \log X)^{\phi(h)/2-1}}{(\frac{1}{2}\phi(h))!}.$$

In the case that the weight k is 2, that (1), (2) and (3) are satisfied and the a(n) are rational, it is known (see [4, Theorems 7.14, 7.15]) that $L_1(s)$ is the Hasse-Weil L-function of some elliptic curve E, and $\langle f, f \rangle$ can always be expressed as the product of an algebraic number, a power of π , and the two periods of E. For example (see [5]), when k = 2, N = 11 there is a unique cusp form of weight 2:

$$f(z) = e^{2\pi i z} \prod_{n=1}^{\infty} (1 - e^{2\pi i n z})^2 \prod_{n=1}^{\infty} (1 - e^{2\pi i n z})^2 = \sum_{n=1}^{\infty} a(n) e^{2\pi i n z},$$

and $L_1(s) = L_E(s) = \sum_{n=1}^{\infty} a(n)n^{-s}$ is the Hasse-Weil L-function of the elliptic curve $E: y^2 + y = x^3 - x^2$. For this curve, our conjectures take the following form:

$$S(X; 2) \sim \frac{11}{5\pi} \Omega^{+} \Omega^{-} \frac{X}{\log X},$$

$$S(X; h) \sim 2 \left(\frac{\Omega^{+} \Omega^{-}}{\pi}\right)^{\phi(h)/2} \frac{X(\phi(h) \log X)^{\phi(h)/2-1}}{(\frac{1}{2}\phi(h))!} \quad (h > 2).$$

Here $\Omega^+ = 0.6346047 \cdots$ and $\Omega^- = 1.4588166 \cdots$ are the real period and the absolute value of the imaginary period of E, respectively.

Now let p be an odd prime. The Hasse-Weil L-function of E over the cyclotomic field $Q(\sqrt[p]{1})$ is given by

$$L_{\mathbf{Q}(\sqrt[p]{T})\setminus E}(s) = \prod_{\chi \mod p} L_E(s, \chi).$$

It is reasonable to expect that the average value (as p varies) is given by

average value of
$$L_{\mathbf{Q}(\sqrt[p]{T})\setminus E}$$
 (1) $\sim L_{E}(1)\cdot \frac{11}{5\pi}\Omega^{+}\Omega^{-}\cdot \prod_{\substack{h\mid (p-1)\\h>2}} \frac{2\left(\frac{\phi(h)}{\pi}\Omega^{+}\Omega^{-}\log p\right)^{\phi(h)/2}}{\phi(h)(\frac{1}{2}\phi(h))!}$.

Sharper forms of part (ii) of the Proposition can be derived on assuming the analytic continuation of $L_h(s)$ for h > 2. Then there will be extra terms involving lower powers of log X, whose coefficients are expressible in terms of the special values of $L_h(s)$, some of which can be given by the conjectures of Deligne [2].

2. In order to lend credence to our Main Conjecture, we give the following arguments. Firstly, the conjecture for S(X; 2) has already been dealt with in [3]. We therefore consider S(X; h) for h > 2. For any prime $p \equiv 1 \pmod{h}$ there are $\phi(h)$ characters mod p of exact order h, and moreover these characters are all primitive. It follows by (2) that, for $p \nmid N$,

$$\left(\left(\frac{\sqrt{N}}{2\pi}p\right)^{s}\Gamma(s)\right)^{\phi(h)}\prod_{\chi \bmod p}L_{1}(s,\chi) = W\left(\left(\frac{\sqrt{N}}{2\pi}p\right)^{k-s}\Gamma(k-s)\right)^{\phi(h)}\prod_{\chi \bmod p}L_{1}(k-s,\chi),$$

$$W = W(p,h) = \prod_{\chi \bmod p}w_{\chi} = (w_{1}\varepsilon(p))^{\phi(h)},$$

where \prod' means that the product is taken over all characters of exact order h, which we denote by $\chi_1, \ldots, \chi_{\phi(h)}$. By Lavrik's method (see [3]), we have

$$\Pi' L_{1}(k/2, \chi) = \frac{1+W}{\Gamma(k/2)^{\phi(h)}} \sum_{n_{1}} \cdots \sum_{n_{\phi(h)}} a(n_{1}) \cdots a(n_{\phi(h)}) \chi_{1}(n_{1}) \\
\cdots \chi_{\phi(h)}(n_{\phi(h)})(n_{1} \cdots n_{\phi(h)})^{-k/2} \\
\cdot \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \left(\Gamma\left(\frac{k}{2} + z\right)\left(\frac{\sqrt{N}}{2\pi}p\right)^{z}\right)^{\phi(h)} (n_{1} \cdots n_{\phi(h)})^{-z} \frac{dz}{z}.$$

Now, summing over p should give a lot of cancellation except for those $\phi(h)$ -tuples

 $(n_1, \ldots, n_{\phi(h)})$ for which

$$\prod_{i=1}^{\phi(h)} \chi_i(n_i) = 1$$

for all $p \nmid n_i$ $(i = 1, ..., \phi(h))$. We can arrange the characters so that $\chi_i = \bar{\chi}_{\phi(h)-i+1}$. It follows that

$$\chi_i(n_i)\chi_{\phi(h)-i+1}(n_{\phi(h)-i+1})=1$$

whenever $n_i = n_{\phi(h)-i+1}$ and $p \nmid n_i$. Also $\chi_i(n_i) = 1$ whenever $n_i = m_i^h$ is an hth-power and $p \nmid m_i$. Combinations of these two cases are the only ways in which the aforementioned tuples can be constructed. Hence, every tuple $(n_1, \ldots, n_{\phi(h)})$ satisfying (5) is given as follows. Let $0 \le r \le \frac{1}{2} \phi(h)$; choose an r-tuple (i_1, \ldots, i_r) with $1 \le i_1 < \cdots < i_r \le \frac{1}{2} \phi(h)$. Put $n_{i_j} = n_{\phi(h)-i_j+1}$ $(j = 1, \ldots, r)$. Also let $n_i = m_i^h$ be a perfect hth-power for $i \ne i_j$, $i \ne \phi(h) - i_j + 1$ $(j = 1, \ldots, r)$. Since there are exactly $\binom{\phi(h)/2}{r}$ such r-tuples, it is reasonable to expect that, after summing (4) over primes $p \equiv 1 \pmod{h}$, S(X; h) should be given asymptotically as

$$\begin{split} S(X;\,h) &\sim \sum_{\substack{p \leq X \\ p \equiv 1(h)}} \frac{1+W}{\Gamma(k/2)^{\phi(h)}} \sum_{r=0}^{\phi(h)/2} \left(\frac{1}{2}(\phi h)\right) \\ &\times \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \left(\Gamma\left(\frac{k}{2}+z\right)\left(\frac{\sqrt{N}}{2\pi}p\right)^{z}\right)^{\phi(h)} \\ &\cdot \left(\sum_{n=1}^{\infty} \frac{a(n)^{2} \chi_{0}(n)}{n^{k+2z}}\right)^{r} \left(\sum_{m=1}^{\infty} \frac{a(m^{h}) \chi_{0}(m)}{m^{h(k/2+z)}}\right)^{\phi(h)-2r} \frac{dz}{z} \\ &= \sum_{\substack{p \leq X \\ p \equiv 1(h)}} \frac{1+W}{\Gamma(k/2)^{\phi(h)}} \cdot \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \left(\Gamma\left(\frac{k}{2}+z\right)\left(\frac{\sqrt{N}}{2\pi}p\right)^{z}\right)^{\phi(h)} H(z)^{\phi(h)/2} \frac{dz}{z}. \end{split}$$

In order to derive the Proposition from the Main Conjecture, note that the Rankin-Selberg L-function $\sum_{n=1}^{\infty} |a(n)|^2 n^{-s}$ has a simple pole at s=k with residue

$$\frac{48\pi}{N}\prod_{p\mid N}(1+p^{-1})^{-1}\cdot\langle f,f\rangle.$$

If $L_1(s)$ satisfies (3), then the coefficients a(n) are real, and $w_1\varepsilon(p)=\pm 1$. Also, $L_h(s)$ is regular for Re(s)>1+h(k-1)/2. Hence, for h>2, H(z) is regular for $\text{Re}(z)>\frac{1}{h}-\frac{1}{2}$ except for a simple pole at z=0, with residue

$$\frac{24\pi}{N}\prod_{p\mid N}(1+p^{-1})^{-1}\cdot\langle f,f\rangle.$$

Shifting the line of integration to $c = \frac{1}{h} - \frac{1}{2} + \varepsilon \, (0 < \varepsilon < \frac{1}{2} - \frac{1}{h})$ and using standard estimates for the growth of the Rankin-Selberg *L*-function, the proposition follows on computing the main term of the residue and applying the prime number theorem for arithmetic progressions.

REFERENCES

P. Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. 43 (1973), 273-307.
 —, Valeurs de fonctions L et périodes d'intégrales, Proc. Sympos. Pure Math., vol. 33, part 2, Amer. Math. Soc., Providence, R.I., 1979, pp. 313-346.

- 3. D. Goldfeld and C. Viola, Mean values of L-functions associated to elliptic, Fermat and other curves at the centre of the critical strip, J. Number Theory 11 (1979), 305-320.
- 4. G. Shimura, Introduction to the arithmetic theory of automorphic functions, Princeton Univ. Press, Princeton, N.J., 1971.
 - 5. J. Tate, The arithmetic of elliptic curves, Invent. Math. 23 (1974), 179-206.
- 6. A. Weil, Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann. 168 (1967), 149-156.

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139

Istituto di Matematica, Università di Pisa, Pisa, Italy