Interpolating sequences for $QA_{B}$
HTML articles powered by AMS MathViewer
- by Carl Sundberg and Thomas H. Wolff PDF
- Trans. Amer. Math. Soc. 276 (1983), 551-581 Request permission
Abstract:
Let $B$ be a closed algebra lying between ${H^\infty }$ and ${L^\infty }$ of the unit circle. We define $QA_B = H^\infty \cap \bar {B}$, the analytic functions in $Q_B = B \cap \bar {B}$. By work of Chang, ${Q_B}$ is characterized by a vanishing mean oscillation condition. We characterize the sequences of points $\left \{{{z_n}} \right \}$ in the open unit disc for which the interpolation problem $f({z_n}) = {\lambda _n}, n = 1, 2,\ldots$, is solvable with $f \in {Q_B}$ for any bounded sequence of numbers $\left \{{{\lambda _n}} \right \}$. Included as a necessary part of our proof is a study of the algebras $Q{A_B}$ and ${Q_B}$.References
- Lennart Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958), 921–930. MR 117349, DOI 10.2307/2372840
- Lennart Carleson, Interpolations by bounded analytic functions and the Corona problem, Proc. Internat. Congr. Mathematicians (Stockholm, 1962) Inst. Mittag-Leffler, Djursholm, 1963, pp. 314–316. MR 0176274
- Sun Yung A. Chang, A characterization of Douglas subalgebras, Acta Math. 137 (1976), no. 2, 82–89. MR 428044, DOI 10.1007/BF02392413
- Sun Yung A. Chang, Structure of subalgebras between $L^{\infty }$ and $H^{\infty }$, Trans. Amer. Math. Soc. 227 (1977), 319–332. MR 433213, DOI 10.1090/S0002-9947-1977-0433213-5
- J. P. Earl, On the interpolation of bounded sequences by bounded functions, J. London Math. Soc. (2) 2 (1970), 544–548. MR 284588, DOI 10.1112/jlms/2.Part_{3}.544
- Charles Fefferman, Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc. 77 (1971), 587–588. MR 280994, DOI 10.1090/S0002-9904-1971-12763-5
- C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137–193. MR 447953, DOI 10.1007/BF02392215
- John B. Garnett, Harmonic interpolating sequences, $L^{p}$ and BMO, Ann. Inst. Fourier (Grenoble) 28 (1978), no. 4, 215–228, vi. MR 513886, DOI 10.5802/aif.721
- John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
- John B. Garnett and Peter W. Jones, The distance in BMO to $L^{\infty }$, Ann. of Math. (2) 108 (1978), no. 2, 373–393. MR 506992, DOI 10.2307/1971171
- Andrew M. Gleason and Hassler Whitney, The extension of linear functionals defined on $H^{\infty }$, Pacific J. Math. 12 (1962), 163–182. MR 142013, DOI 10.2140/pjm.1962.12.163
- Kenneth Hoffman, Bounded analytic functions and Gleason parts, Ann. of Math. (2) 86 (1967), 74–111. MR 215102, DOI 10.2307/1970361
- F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426. MR 131498, DOI 10.1002/cpa.3160140317
- Peter W. Jones, Estimates for the corona problem, J. Functional Analysis 39 (1980), no. 2, 162–181. MR 597809, DOI 10.1016/0022-1236(80)90011-7 —, ${L^\infty }$ estimates for the $\bar {\partial }$ problem on the upper half plane, Acta Math, (to appear).
- Paul Koosis, Introduction to $H_{p}$ spaces, London Mathematical Society Lecture Note Series, vol. 40, Cambridge University Press, Cambridge-New York, 1980. With an appendix on Wolff’s proof of the corona theorem. MR 565451
- Sun Yung A. Chang, A characterization of Douglas subalgebras, Acta Math. 137 (1976), no. 2, 82–89. MR 428044, DOI 10.1007/BF02392413
- Donald Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391–405. MR 377518, DOI 10.1090/S0002-9947-1975-0377518-3
- Donald Sarason, Function theory on the unit circle, Virginia Polytechnic Institute and State University, Department of Mathematics, Blacksburg, Va., 1978. Notes for lectures given at a Conference at Virginia Polytechnic Institute and State University, Blacksburg, Va., June 19–23, 1978. MR 521811
- Carl Sundberg, A constructive proof of the Chang-Marshall theorem, J. Functional Analysis 46 (1982), no. 2, 239–245. MR 660188, DOI 10.1016/0022-1236(82)90037-4
- M. Tsuji, Potential theory in modern function theory, Maruzen Co. Ltd., Tokyo, 1959. MR 0114894
- Thomas H. Wolff, Two algebras of bounded functions, Duke Math. J. 49 (1982), no. 2, 321–328. MR 659943 A. Bernard, Algèbres quotients d’algèbres uniformes, C. R. Acad. Sci. Paris Sér. A 272 (1971), 1101-1104. N. Th. Varapoulos, Ensembles pic et ensembles d’interpolation pour les algèbres uniformes, C. R. Acad. Sci. Paris Sér. A 272 (1971), 866-867.
Additional Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 276 (1983), 551-581
- MSC: Primary 30H05; Secondary 43A40, 46H15
- DOI: https://doi.org/10.1090/S0002-9947-1983-0688962-3
- MathSciNet review: 688962