Smooth type $\textrm {III}$ diffeomorphisms of manifolds
HTML articles powered by AMS MathViewer
- by Jane Hawkins
- Trans. Amer. Math. Soc. 276 (1983), 625-643
- DOI: https://doi.org/10.1090/S0002-9947-1983-0688966-0
- PDF | Request permission
Abstract:
In this paper we prove that every smooth paracompact connected manifold of dimension $\geqslant 3$ admits a smooth type ${\text {III}}_\lambda$ diffeomorphism for every $0 \leqslant \lambda \leqslant 1$. (Herman proved the result for $\lambda = 1$ in [7].) The result follows from a theorem which gives sufficient conditions for the existence of smooth ergodic real line extensions of diffeomorphisms of manifolds.References
- A. Denjoy, Sur les courbes définies par les équations différentielles à la surface du tore, J. Math. Pures Appl. (9) 11 (1932), 333-375.
- Yael Naim Dowker, Finite and $\sigma$-finite invariant measures, Ann. of Math. (2) 54 (1951), 595–608. MR 45193, DOI 10.2307/1969491
- Nathaniel A. Friedman, Introduction to ergodic theory, Van Nostrand Reinhold Mathematical Studies, No. 29, Van Nostrand Reinhold Co., New York-Toronto-London, 1970. MR 0435350
- Paul R. Halmos, Lectures on ergodic theory, Publications of the Mathematical Society of Japan, vol. 3, Mathematical Society of Japan, Tokyo, 1956. MR 0097489 D. V. Anosov, Existence of smooth ergodic flows on smooth manifolds, Math. USSR-Izv. 8 (1976), 525-551.
- Jane Hawkins and Klaus Schmidt, On $C^{2}$-diffeomorphisms of the circle which are of type $\textrm {III}_{1}$, Invent. Math. 66 (1982), no. 3, 511–518. MR 662606, DOI 10.1007/BF01389227 M. R. Herman, Construction de difféomorphismes ergodiques, Preprint, 1979. —, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Études Sci. Publ. Math. 49 (1979), 5-234.
- Eberhard Hopf, Theory of measure and invariant integrals, Trans. Amer. Math. Soc. 34 (1932), no. 2, 373–393. MR 1501643, DOI 10.1090/S0002-9947-1932-1501643-6
- Roger Jones and William Parry, Compact abelian group extensions of dynamical systems. II, Compositio Math. 25 (1972), 135–147. MR 338318
- Y. Katznelson, Sigma-finite invariant measures for smooth mappings of the circle, J. Analyse Math. 31 (1977), 1–18. MR 486415, DOI 10.1007/BF02813295
- John L. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955. MR 0070144
- Wolfgang Krieger, On the Araki-Woods asymptotic ratio set and non-singular transformations of a measure space, Contributions to Ergodic Theory and Probability (Proc. Conf., Ohio State Univ., Columbus, Ohio, 1970) Lecture Notes in Math., Vol. 160, Springer, Berlin, 1970, pp. 158–177. MR 0414823
- Viktor Losert and Klaus Schmidt, A class of probability measures on groups arising from some problems in ergodic theory, Probability measures on groups (Proc. Fifth Conf., Oberwolfach, 1978) Lecture Notes in Math., vol. 706, Springer, Berlin, 1979, pp. 220–238. MR 536988
- Donald S. Ornstein, On invariant measures, Bull. Amer. Math. Soc. 66 (1960), 297–300. MR 146350, DOI 10.1090/S0002-9904-1960-10478-8
- Klaus Schmidt, Cocycles on ergodic transformation groups, Macmillan Lectures in Mathematics, Vol. 1, Macmillan Co. of India, Ltd., Delhi, 1977. MR 0578731
- S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 228014, DOI 10.1090/S0002-9904-1967-11798-1
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 276 (1983), 625-643
- MSC: Primary 58F11; Secondary 28D99
- DOI: https://doi.org/10.1090/S0002-9947-1983-0688966-0
- MathSciNet review: 688966