Domain Bloch constants

Author:
C. David Minda

Journal:
Trans. Amer. Math. Soc. **276** (1983), 645-655

MSC:
Primary 30D45; Secondary 30F15

DOI:
https://doi.org/10.1090/S0002-9947-1983-0688967-2

MathSciNet review:
688967

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The classical Bloch constant is defined for holomorphic functions defined on and normalized by . Let denote the Riemann surface of and the set of branch points. Then can be regarded as a lower bound for the radius of the largest disk contained in . The metric on used to measure the size of disks on is obtained by lifting the euclidean metric from to . The surface can also be regarded as spread over and the hyperbolic metric lifted to . One may then ask for the radius of the largest hyperbolic disk on . A lower bound for this radius is called a domain Bloch constant. The determination of domain Bloch constants is nontrivial for nonconstant analytic functions , where is a hyperbolic Riemann surface. Upper and lower bounds for domain Bloch constants are given. Also, domain Bloch constants are given an interpretation as a radius of local schlichtness.

**[1]**Lars V. Ahlfors,*An extension of Schwarz’s lemma*, Trans. Amer. Math. Soc.**43**(1938), no. 3, 359–364. MR**1501949**, https://doi.org/10.1090/S0002-9947-1938-1501949-6**[2]**Lars V. Ahlfors,*Conformal invariants: topics in geometric function theory*, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. McGraw-Hill Series in Higher Mathematics. MR**0357743****[3]**L. V. Ahlfors and H. Grunsky,*Über die Blochsche Konstante*, Math. Z.**42**(1937), no. 1, 671–673 (German). MR**1545698**, https://doi.org/10.1007/BF01160101**[4]**William Harvey,*Chabauty spaces of discrete groups*, Discontinuous groups and Riemann surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973) Princeton Univ. Press, Princeton, N.J., 1974, pp. 239–246. Ann. of Math. Studies, No. 79. MR**0364629****[5]**Maurice Heins,*On a class of conformal metrics*, Nagoya Math. J.**21**(1962), 1–60. MR**0143901****[6]**Maurice Heins,*Selected topics in the classical theory of functions of a complex variable*, Athena Series: Selected Topics in Mathematics, Holt, Rinehart and Winston, New York, 1962. MR**0162913****[7]**Albert Marden,*Universal properties of Fuchsian groups in the Poincaré metric*, Discontinuous groups and Riemann surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973) Princeton Univ. Press, Princeton, N.J., 1974, pp. 315–339. Ann. of Math. Studies, No. 79. MR**0379837****[8]**David Minda,*The hyperbolic metric and coverings of Riemann surfaces*, Pacific J. Math.**84**(1979), no. 1, 171–182. MR**559634****[9]**C. David Minda,*Bloch constants*, J. Analyse Math.**41**(1982), 54–84. MR**687945**, https://doi.org/10.1007/BF02803394**[10]**David Minda,*Bloch constants for meromorphic functions*, Math. Z.**181**(1982), no. 1, 83–92. MR**671716**, https://doi.org/10.1007/BF01214983**[11]**Jacob Sturm and Meir Shinnar,*The maximal inscribed ball of a Fuchsian group*, Discontinuous groups and Riemann surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973) Princeton Univ. Press, Princeton, N.J., 1974, pp. 439–443. Ann. of Math. Studies, No. 79. MR**0349994****[12]**M. Tsuji,*Potential theory in modern function theory*, Maruzen Co., Ltd., Tokyo, 1959. MR**0114894****[13]**Akira Yamada,*On Marden’s universal constant of Fuchsian groups*, Kodai Math. J.**4**(1981), no. 2, 266–277. MR**630246****[14]**-,*On Marden's universal constant of Fuchsian groups*. II (preprint).

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
30D45,
30F15

Retrieve articles in all journals with MSC: 30D45, 30F15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1983-0688967-2

Article copyright:
© Copyright 1983
American Mathematical Society