Generalized intersection multiplicities of modules
HTML articles powered by AMS MathViewer
- by Sankar P. Dutta
- Trans. Amer. Math. Soc. 276 (1983), 657-669
- DOI: https://doi.org/10.1090/S0002-9947-1983-0688968-4
- PDF | Request permission
Abstract:
In this paper we study intersection multiplicities of modules as defined by Serre and prove that over regular local rings of $\dim \leqslant 5$, given two modules $M,N$ with $l(M\otimes _{R}N) < \infty$ and $\dim \;M + \dim \;N < \dim \;R,\chi (M,N) = \sum \nolimits _{i = 0}^{\dim \; R}( - 1)^i l(\operatorname {Tor}_i^R(M,N)) = 0$. We also study multiplicity in a more general set up. Finally we extend Serre’s result from pairs of modules to pairs of finite free complexes whose homologies are killed by ${I^n},{J^n}$, respectively, for some $n > 0$, with $\dim R/I + \dim R/J < \dim R$.References
- Maurice Auslander and David A. Buchsbaum, Codimension and multiplicity, Ann. of Math. (2) 68 (1958), 625–657. MR 99978, DOI 10.2307/1970159
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- Sankar P. Dutta, Weak linking and multiplicities, J. Pure Appl. Algebra 27 (1983), no. 2, 111–130. MR 687746, DOI 10.1016/0022-4049(83)90010-5
- Sankar P. Dutta, Frobenius and multiplicities, J. Algebra 85 (1983), no. 2, 424–448. MR 725094, DOI 10.1016/0021-8693(83)90106-0 H. B. Foxby, Intersection multiplicities of modules (preprint). R. M. Fossum, H. B. Foxby and B. Iverson, A characteristic class in algebraic $k$-theory (preprint).
- Melvin Hochster, Cohen-Macaulay modules, Conference on Commutative Algebra (Univ. Kansas, Lawrence, Kan., 1972), Lecture Notes in Math., Vol. 311, Springer, Berlin, 1973, pp. 120–152. MR 0340251
- Stephen Lichtenbaum, On the vanishing of $\textrm {Tor}$ in regular local rings, Illinois J. Math. 10 (1966), 220–226. MR 188249 M. P. Mallaivain-Brameret, Une remarque sur les anneaux locaux réguliers, Sém. Dubreil-Pisot (Algèbre et Théorie des Nombres), 1970/71, no. 13.
- Christian Peskine and Lucien Szpiro, Syzygies et multiplicités, C. R. Acad. Sci. Paris Sér. A 278 (1974), 1421–1424 (French). MR 349659 J. P. Serre, Algèbre locale. Multiplicité, Lecture Notes in Math., vol. 11, Springer-Verlag, Berlin and New York, 1975.
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 276 (1983), 657-669
- MSC: Primary 13H15; Secondary 13D99, 13H10
- DOI: https://doi.org/10.1090/S0002-9947-1983-0688968-4
- MathSciNet review: 688968