Biholomorphic invariants of a hyperbolic manifold and some applications
HTML articles powered by AMS MathViewer
- by B. L. Fridman
- Trans. Amer. Math. Soc. 276 (1983), 685-698
- DOI: https://doi.org/10.1090/S0002-9947-1983-0688970-2
- PDF | Request permission
Abstract:
A biholomorphically invariant real function ${h_x}$ is defined for a hyperbolic manifold $X$. Properties of such functions are studied. These properties are applied to prove the following theorem. If a hyperbolic manifold $X$ can be exhausted by biholomorphic images of a strictly pseudoconvex domain $D \subset {{\mathbf {C}}^n}$ with $\partial D\; \in \;{C^3}$, then $X$ is biholomorphically equivalent either to $D$ or to the unit ball in ${{\mathbf {C}}^n}$. The properties of ${h_D}$ are also applied to some questions concerning the group of analytical automorphisms of a strictly pseudoconvex domain and to similar questions concerning polyhedra.References
- H. Alexander, Extremal holomorphic imbeddings between the ball and polydisc, Proc. Amer. Math. Soc. 68 (1978), no. 2, 200–202. MR 473239, DOI 10.1090/S0002-9939-1978-0473239-5
- John Erik Fornaess and Edgar Lee Stout, Polydiscs in complex manifolds, Math. Ann. 227 (1977), no. 2, 145–153. MR 435441, DOI 10.1007/BF01350191
- John Erik Fornæss and Nessim Sibony, Increasing sequences of complex manifolds, Math. Ann. 255 (1981), no. 3, 351–360. MR 615855, DOI 10.1007/BF01450708
- B. L. Fridman, Imbedding of a strictly pseudoconvex domain in a polyhedron, Dokl. Akad. Nauk SSSR 249 (1979), no. 1, 63–67 (Russian). MR 553986
- B. L. Fridman, A class of analytic polyhedra, Dokl. Akad. Nauk SSSR 242 (1978), no. 5, 1020–1022 (Russian). MR 510253
- Ian Graham, Boundary behavior of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains in $C^{n}$ with smooth boundary, Trans. Amer. Math. Soc. 207 (1975), 219–240. MR 372252, DOI 10.1090/S0002-9947-1975-0372252-8
- Robert E. Greene and Steven G. Krantz, The automorphism groups of strongly pseudoconvex domains, Math. Ann. 261 (1982), no. 4, 425–446. MR 682655, DOI 10.1007/BF01457445
- Paul F. Klembeck, Kähler metrics of negative curvature, the Bergmann metric near the boundary, and the Kobayashi metric on smooth bounded strictly pseudoconvex sets, Indiana Univ. Math. J. 27 (1978), no. 2, 275–282. MR 463506, DOI 10.1512/iumj.1978.27.27020
- Shoshichi Kobayashi, Hyperbolic manifolds and holomorphic mappings, Pure and Applied Mathematics, vol. 2, Marcel Dekker, Inc., New York, 1970. MR 0277770
- H. L. Royden, Remarks on the Kobayashi metric, Several complex variables, II (Proc. Internat. Conf., Univ. Maryland, College Park, Md., 1970) Lecture Notes in Math., Vol. 185, Springer, Berlin, 1971, pp. 125–137. MR 0304694
- B. Wong, Characterization of the unit ball in $\textbf {C}^{n}$ by its automorphism group, Invent. Math. 41 (1977), no. 3, 253–257. MR 492401, DOI 10.1007/BF01403050
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 276 (1983), 685-698
- MSC: Primary 32H20; Secondary 32F15
- DOI: https://doi.org/10.1090/S0002-9947-1983-0688970-2
- MathSciNet review: 688970