Weighted norm inequalities for the Fourier transform
HTML articles powered by AMS MathViewer
- by Benjamin Muckenhoupt
- Trans. Amer. Math. Soc. 276 (1983), 729-742
- DOI: https://doi.org/10.1090/S0002-9947-1983-0688974-X
- PDF | Request permission
Abstract:
Given $p$ and $q$ satisfying $1 < p \leqslant q < \infty$, sufficient conditions on nonnegative pairs of functions $U,V$ are given to imply \[ {\left [ {\int _{{R^n}}^{} {|\hat f(x){|^q}U(x) dx}} \right ]^{1/q}} \leqslant c{\left [ {\int _{{R^n}}^{} {|f(x){|^p}V(x) dx}} \right ]^{1/p}},\] where $\hat f$ denotes the Fourier transform of $f$, and $c$ is independent of $f$. For the case $q = p’$ the sufficient condition is that for all positive $r$, \[ \left [ {\int _{U(x) > Br} {U(x)\;dx}} \right ]\left [ {\int _{V(x) < {r^{p - 1}}} {V{{(x)}^{- 1/(p - 1)}}\;dx}} \right ] \leqslant A,\] where $A$ and $B$ are positive and independent of $r$. For $q \ne p’$ the condition is more complicated but also is invariant under rearrangements of $U$ and $V$. In both cases the sufficient condition is shown to be necessary if the norm inequality holds for all rearrangements of $U$ and $V$. Examples are given to show that the sufficient condition is not necessary for a pair $U,V$ if the norm inequality is assumed only for that pair.References
- Néstor E. Aguilera and Eleonor O. Harboure, On the search for weighted norm inequalities for the Fourier transform, Pacific J. Math. 104 (1983), no. 1, 1–14. MR 683723
- Björn E. J. Dahlberg, Regularity properties of Riesz potentials, Indiana Univ. Math. J. 28 (1979), no. 2, 257–268. MR 523103, DOI 10.1512/iumj.1979.28.28018 Peter Knopf and Karl Rudnick, Weighted norm inequalities for the Fourier transform (preprint).
- Benjamin Muckenhoupt, Weighted norm inequalities for classical operators, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 69–83. MR 545240
- Y. Sagher, Real interpolation with weights, Indiana Univ. Math. J. 30 (1981), no. 1, 113–121. MR 600037, DOI 10.1512/iumj.1981.30.30010
- Elias M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956), 482–492. MR 82586, DOI 10.1090/S0002-9947-1956-0082586-0
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 276 (1983), 729-742
- MSC: Primary 42A38; Secondary 26D15, 42B10, 44A15
- DOI: https://doi.org/10.1090/S0002-9947-1983-0688974-X
- MathSciNet review: 688974