Are primitive words universal for infinite symmetric groups?
HTML articles powered by AMS MathViewer
- by D. M. Silberger
- Trans. Amer. Math. Soc. 276 (1983), 841-852
- DOI: https://doi.org/10.1090/S0002-9947-1983-0688980-5
- PDF | Request permission
Abstract:
Let $W = W({x_1}, \ldots ,{x_j})$ be any word in the $j$ free generators ${x_1}, \ldots ,{x_j}$, and suppose that $W$ cannot be expressed in the form $W = {V^k}$ for $V$ a word and for $k$ an integer with $\left | k \right | \ne 1$. We ask whether the equation $f = W$ has a solution $({x_1}, \ldots ,{x_j}) = (a_{1}, \ldots , a_{j}) \in G^{j}$ whenever $G$ is an infinite symmetric group and $f$ is an element in $G$. We establish an affirmative answer in the case that $W(x,y) = {x^m}{y^n}$ for $m$ and $n$ nonzero integers.References
- Jurema Arante, Sobre a ISym-universalidade de palavras primitivas, Dissertação de Mestrado, Universidade Federal de Santa Catarina, Florianópolis, Brasil, 1981.
- Edward A. Bertram, Permutations as products of conjugate infinite cycles, Pacific J. Math. 39 (1971), 275–284. MR 322021
- Edward Bertram, Even permutations as a product of two conjugate cycles, J. Combinatorial Theory Ser. A 12 (1972), 368–380. MR 297853, DOI 10.1016/0097-3165(72)90102-1 M. P. Borba, D. M. Silberger and M. L. Valente, Representing the infinite cycle (to appear).
- Manfred Droste and Rüdiger Göbel, On a theorem of Baer, Schreier, and Ulam for permutations, J. Algebra 58 (1979), no. 2, 282–290. MR 540639, DOI 10.1016/0021-8693(79)90161-3
- A. Ehrenfeucht, S. Fajtlowicz, J. Malitz, and J. Mycielski, Some problems on the universality of words in groups, Algebra Universalis 11 (1980), no. 2, 261–263. MR 588219, DOI 10.1007/BF02483104
- Andrzej Ehrenfeucht and D. M. Silberger, Universal terms of the form $B^{n}A^{m}$, Algebra Universalis 10 (1980), no. 1, 96–116. MR 552160, DOI 10.1007/BF02482894
- Andrzej Ehrenfeucht and D. M. Silberger, Periodicity and unbordered segments of words, Discrete Math. 26 (1979), no. 2, 101–109. MR 535237, DOI 10.1016/0012-365X(79)90116-X A. B. Gray, Infinite symmetric groups and monomial groups, Doctoral Dissertation, New Mexico State University, Las Cruces, New Mexico, 1960.
- Dale H. Husemoller, Ramified coverings of Riemann surfaces, Duke Math. J. 29 (1962), 167–174. MR 136726
- J. R. Isbell, On the problem of universal terms, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 14 (1966), 593–595 (English, with Russian summary). MR 207567
- Roger C. Lyndon, Equations in groups, Bol. Soc. Brasil. Mat. 11 (1980), no. 1, 79–102. MR 607019, DOI 10.1007/BF02584882
- Jan Mycielski, Research Problems: Can One Solve Equations in Group?, Amer. Math. Monthly 84 (1977), no. 9, 723–726. MR 1538505, DOI 10.2307/2321255
- Jan Mycielski, Equations unsolvable in $\textrm {GL}_{2}(C)$ and related problems, Amer. Math. Monthly 85 (1978), no. 4, 263–265. MR 470100, DOI 10.2307/2321170
- Oystein Ore, Some remarks on commutators, Proc. Amer. Math. Soc. 2 (1951), 307–314. MR 40298, DOI 10.1090/S0002-9939-1951-0040298-4 M. L. Valente, Sobre a universalidade de palavras para grupos simétricos, Dissertação de Mestrado, Universidade Federal de Santa Catarina, Florianópolis, Brasil, 1979.
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 276 (1983), 841-852
- MSC: Primary 20B30; Secondary 03D40, 20B35, 20F10
- DOI: https://doi.org/10.1090/S0002-9947-1983-0688980-5
- MathSciNet review: 688980