## Viscosity solutions of Hamilton-Jacobi equations

HTML articles powered by AMS MathViewer

- by Michael G. Crandall and Pierre-Louis Lions
- Trans. Amer. Math. Soc.
**277**(1983), 1-42 - DOI: https://doi.org/10.1090/S0002-9947-1983-0690039-8
- PDF | Request permission

## Abstract:

Problems involving Hamilton-Jacobi equations—which we take to be either of the stationary form $H(x,u,Du) = 0$ or of the evolution form ${u_{t}} + H(x,t,u,Du) = 0$, where $Du$ is the spatial gradient of $u$—arise in many contexts. Classical analysis of associated problems under boundary and/or initial conditions by the method of characteristics is limited to local considerations owing to the crossing of characteristics. Global analysis of these problems has been hindered by the lack of an appropriate notion of solution for which one has the desired existence and uniqueness properties. In this work a notion of solution is proposed which allows, for example, solutions to be nowhere differentiable but for which strong uniqueness theorems, stability theorems and general existence theorems, as discussed herein, are all valid.## References

- Sadakazu Aizawa,
*A semigroup treatment of the Hamilton-Jacobi equation in several space variables*, Hiroshima Math. J.**6**(1976), no. 1, 15–30. MR**393779** - Viorel Barbu,
*Nonlinear semigroups and differential equations in Banach spaces*, Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leiden, 1976. Translated from the Romanian. MR**0390843** - Anatole Beck,
*Uniqueness of flow solutions of differential equations*, Recent advances in topological dynamics (Proc. Conf. Topological Dynamics, Yale Univ., New Haven, Conn., 1972; in honor of Gustav Arnold Hedlund), Lecture Notes in Math., Vol. 318, Springer, Berlin, 1973, pp. 30–50. MR**0409997** - Stanley H. Benton Jr.,
*The Hamilton-Jacobi equation*, Mathematics in Science and Engineering, Vol. 131, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1977. A global approach. MR**0442431** - Jean-Michel Bony,
*Principe du maximum dans les espaces de Sobolev*, C. R. Acad. Sci. Paris Sér. A-B**265**(1967), A333–A336 (French). MR**223711** - E. D. Conway and E. Hopf,
*Hamilton’s theory and generalized solutions of the Hamilton-Jacobi equation*, J. Math. Mech.**13**(1964), 939–986. MR**0182761** - Michael G. Crandall,
*An introduction to evolution governed by accretive operators*, Dynamical systems (Proc. Internat. Sympos., Brown Univ., Providence, R.I., 1974) Academic Press, New York, 1976, pp. 131–165. MR**0636953** - Michael G. Crandall and Pierre-Louis Lions,
*Condition d’unicité pour les solutions généralisées des équations de Hamilton-Jacobi du premier ordre*, C. R. Acad. Sci. Paris Sér. I Math.**292**(1981), no. 3, 183–186 (French, with English summary). MR**610314**
—, - Avron Douglis,
*The continuous dependence of generalized solutions of non-linear partial differential equations upon initial data*, Comm. Pure Appl. Math.**14**(1961), 267–284. MR**139848**, DOI 10.1002/cpa.3160140307 - Lawrence C. Evans,
*On solving certain nonlinear partial differential equations by accretive operator methods*, Israel J. Math.**36**(1980), no. 3-4, 225–247. MR**597451**, DOI 10.1007/BF02762047 - Lawrence C. Evans,
*Application of nonlinear semigroup theory to certain partial differential equations*, Nonlinear evolution equations (Proc. Sympos., Univ. Wisconsin, Madison, Wis., 1977) Publ. Math. Res. Center Univ. Wisconsin, vol. 40, Academic Press, New York-London, 1978, pp. 163–188. MR**513818** - Wendell H. Fleming,
*The Cauchy problem for a nonlinear first order partial differential equation*, J. Differential Equations**5**(1969), 515–530. MR**235269**, DOI 10.1016/0022-0396(69)90091-6
—, - Wendell H. Fleming,
*The Cauchy problem for degenerate parabolic equations*, J. Math. Mech.**13**(1964), 987–1008. MR**0179473** - Avner Friedman,
*The Cauchy problem for first order partial differential equations*, Indiana Univ. Math. J.**23**(1974), 27–40. MR**326136**, DOI 10.1512/iumj.1973.23.23004 - Eberhard Hopf,
*On the right weak solution of the Cauchy problem for a quasilinear equation of first order*, J. Math. Mech.**19**(1969/1970), 483–487. MR**0251357**, DOI 10.1512/iumj.1970.19.19045
S. N. Kružkov, - S. N. Kružkov,
*Generalized solutions of nonlinear equations of the first order with several variables. I*, Mat. Sb. (N.S.)**70 (112)**(1966), 394–415 (Russian). MR**0199543**
—, - Pierre-Louis Lions,
*Generalized solutions of Hamilton-Jacobi equations*, Research Notes in Mathematics, vol. 69, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR**667669** - P.-L. Lions,
*Control of diffusion processes in $\textbf {R}^{N}$*, Comm. Pure Appl. Math.**34**(1981), no. 1, 121–147. MR**600574**, DOI 10.1002/cpa.3160340106 - O. A. Oleĭnik,
*Discontinuous solutions of non-linear differential equations*, Amer. Math. Soc. Transl. (2)**26**(1963), 95–172. MR**0151737**, DOI 10.1090/trans2/026/05
M. B. Tamburro, - A. I. Vol′pert,
*Spaces $\textrm {BV}$ and quasilinear equations*, Mat. Sb. (N.S.)**73 (115)**(1967), 255–302 (Russian). MR**0216338** - M. G. Crandall, L. C. Evans, and P.-L. Lions,
*Some properties of viscosity solutions of Hamilton-Jacobi equations*, Trans. Amer. Math. Soc.**282**(1984), no. 2, 487–502. MR**732102**, DOI 10.1090/S0002-9947-1984-0732102-X

*Two approximations of solutions of Hamilton-Jacobi equations*(to appear).

*Nonlinear partial differential equations—probabilistic and game theoretic methods*, Problems in Nonlinear Analysis, CIME, Ed. Cremonese, Roma, 1971.

*Generalized solution of the Hamilton-Jacobi equations of Eikonal type*. I, Math. USSR-Sb.

**27**(1975), 406-446. —,

*Generalized solutions of nonlinear first order equations and certain quasilinear parabolic equations*, Vestnik Moscov. Univ. Ser. I Mat. Meh.

**6**(1964), 67-74. (Russian)

*First order quasilinear equations with several space variables*, Math. USSR-Sb.

**10**(1970), 217-243.

*The evolution operator approach to the Hamilton-Jacobi equations*, Israel J. Math.

## Bibliographic Information

- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**277**(1983), 1-42 - MSC: Primary 35F20
- DOI: https://doi.org/10.1090/S0002-9947-1983-0690039-8
- MathSciNet review: 690039