Almost convergent and weakly almost periodic functions on a semigroup
HTML articles powered by AMS MathViewer
- by Heneri A. M. Dzinotyiweyi
- Trans. Amer. Math. Soc. 277 (1983), 125-132
- DOI: https://doi.org/10.1090/S0002-9947-1983-0690044-1
- PDF | Request permission
Abstract:
Let $S$ be a topological semigroup, ${\text {US}}(S)$ the set of all bounded uniformly continuous functions on $S,{\text {WAP(}}S)$ the set of all (bounded) weakly almost periodic functions on $S,{E_0}(S): = \{ f \in {\text {UC(}}S):m(|f|) = 0$ for each left and right invariant mean $m$ on ${\text {UC(}}S)\}$ and ${W_0}(S): = \{ f \in {\text {WAP}}(S):\:m(|f|) = 0$ for each left and right invariant mean $m$ on ${\text {WAP(}}S)\}$. Among other results, for a large class of noncompact locally compact topological semigroups $S$, we show that the quotient space ${E_0}(S)/{W_0}(S)$ contains a linear isometric copy of ${l^\infty }$ and so is nonseparable.References
- R. B. Burckel, Weakly almost periodic functions on semigroups, Gordon and Breach Science Publishers, New York-London-Paris, 1970. MR 0263963
- Ching Chou, Weakly almost periodic functions and almost convergent functions on a group, Trans. Amer. Math. Soc. 206 (1975), 175–200. MR 394062, DOI 10.1090/S0002-9947-1975-0394062-8
- Heneri A. M. Dzinotyiweyi, Nonseparability of quotient spaces of function algebras on topological semigroups, Trans. Amer. Math. Soc. 272 (1982), no. 1, 223–235. MR 656487, DOI 10.1090/S0002-9947-1982-0656487-6
- Heneri A. M. Dzinotyiweyi, Weak and norm continuity of semigroup actions on normed linear spaces, Quart. J. Math. Oxford Ser. (2) 33 (1982), no. 129, 85–90. MR 689853, DOI 10.1093/qmath/33.1.85
- Gerald Itzkowitz, Uniform structure in topological groups, Proc. Amer. Math. Soc. 57 (1976), no. 2, 363–366. MR 404518, DOI 10.1090/S0002-9939-1976-0404518-3
- Gèrard L. G. Sleijpen, Locally compact semigroups and continuous translations of measures, Proc. London Math. Soc. (3) 37 (1978), no. 1, 75–97. MR 499939, DOI 10.1112/plms/s3-37.1.75
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 277 (1983), 125-132
- MSC: Primary 43A60; Secondary 22A20
- DOI: https://doi.org/10.1090/S0002-9947-1983-0690044-1
- MathSciNet review: 690044