Nonfactorization theorems in weighted Bergman and Hardy spaces on the unit ball of $\textbf {C}^{n}$ $(n>1)$
HTML articles powered by AMS MathViewer
- by M. Seetharama Gowda
- Trans. Amer. Math. Soc. 277 (1983), 203-212
- DOI: https://doi.org/10.1090/S0002-9947-1983-0690048-9
- PDF | Request permission
Abstract:
Let ${A^{p,\alpha }}(B),{A^{q,\alpha }}(B)$ and ${A^{l,\alpha }}(B)$ be weighted Bergman spaces on the unit ball of ${{\text {C}}^{n}} (n > 1)$. We prove: Theorem 1. If $1/l = 1/p + 1/q$ then ${A^{p,\alpha }}(B) \cdot {A^{q,\alpha }}(B)$ is of first category in ${A^{l,\alpha }}(B)$. Theorem 2. Theorem 1 holds for Hardy spaces in place of weighted Bergman spaces. We also show that Theorems 1 and 2 hold for the polydisc ${U^n}$ in place of $B$.References
- R. R. Coifman, R. Rochberg, and Guido Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. (2) 103 (1976), no. 3, 611–635. MR 412721, DOI 10.2307/1970954
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- Charles Horowitz, Factorization theorems for functions in the Bergman spaces, Duke Math. J. 44 (1977), no. 1, 201–213. MR 427650
- Joseph Miles, A factorization theorem in $H^{1}(U^{3})$, Proc. Amer. Math. Soc. 52 (1975), 319–322. MR 374459, DOI 10.1090/S0002-9939-1975-0374459-8
- Jean-Pierre Rosay, Sur la non-factorisation des éléments de l’espace de Hardy $H^{1}(U^{2})$, Illinois J. Math. 19 (1975), 479–482 (French). MR 377098
- Walter Rudin, Function theory in polydiscs, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0255841
- Walter Rudin, Function theory in the unit ball of $\textbf {C}^{n}$, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594, DOI 10.1007/978-1-4613-8098-6
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 277 (1983), 203-212
- MSC: Primary 32A35; Secondary 46E15
- DOI: https://doi.org/10.1090/S0002-9947-1983-0690048-9
- MathSciNet review: 690048