Semistability at the end of a group extension
HTML articles powered by AMS MathViewer
- by Michael L. Mihalik
- Trans. Amer. Math. Soc. 277 (1983), 307-321
- DOI: https://doi.org/10.1090/S0002-9947-1983-0690054-4
- PDF | Request permission
Abstract:
A $1$-ended ${\text {CW}}$-complex, $Q$, is semistable at $\infty$ if all proper maps $r:\ [0,\infty ) \to Q$ are properly homotopic. If ${X_1}$ and ${X_2}$ are finite ${\text {CW}}$-complexes with isomorphic fundamental groups, then the universal cover of ${X_1}$ is semistable at $\infty$ if and only if the universal cover of ${X_2}$ is semistable at $\infty$. Hence, the notion of a finitely presented group being semistable at $\infty$ is well defined. We prove Main Theorem. Let $1 \to H \to G \to K \to 1$ be a short exact sequence of finitely generated infinite groups. If $G$ is finitely presented, then $G$ is semistable at $\infty$. Theorem. If $A$ and $B$ are locally compact, connected noncompact $CW$-complexes, then $A \times B$ is semistable at $\infty$. Theorem. $\langle \;x,y:x{y^b}{x^{ - 1}} = {y^c};b\; and \; c \; nonzero\; integers\; \rangle$ is semistable at $\infty$. The proofs are geometrical in nature and the main tool is covering space theory.References
- T. A. Chapman, On some applications of infinite-dimensional manifolds to the theory of shape, Fund. Math. 76 (1972), no. 3, 181–193. MR 320997, DOI 10.4064/fm-76-3-181-193
- Hans Freudenthal, Über die Enden topologischer Räume und Gruppen, Math. Z. 33 (1931), no. 1, 692–713 (German). MR 1545233, DOI 10.1007/BF01174375
- Ross Geoghegan, A note on the vanishing of $\textrm {lim}^{1}$, J. Pure Appl. Algebra 17 (1980), no. 1, 113–116. MR 560787, DOI 10.1016/0022-4049(80)90025-0
- Marvin J. Greenberg, Lectures on algebraic topology, W. A. Benjamin, Inc., New York-Amsterdam, 1967. MR 0215295
- John Hempel and William Jaco, Fundamental groups of $3$-manifolds which are extensions, Ann. of Math. (2) 95 (1972), 86–98. MR 287550, DOI 10.2307/1970856
- Heinz Hopf, Enden offener Räume und unendliche diskontinuierliche Gruppen, Comment. Math. Helv. 16 (1944), 81–100 (German). MR 10267, DOI 10.1007/BF02568567
- C. H. Houghton, Cohomology and the behaviour at infinity of finitely presented groups, J. London Math. Soc. (2) 15 (1977), no. 3, 465–471. MR 457577, DOI 10.1112/jlms/s2-15.3.465
- Brad Jackson, End invariants of group extensions, Topology 21 (1982), no. 1, 71–81. MR 630881, DOI 10.1016/0040-9383(82)90042-8
- Ronnie Lee and Frank Raymond, Manifolds covered by Euclidean space, Topology 14 (1975), 49–57. MR 365581, DOI 10.1016/0040-9383(75)90034-8
- D. R. McMillan Jr., Some contractible open $3$-manifolds, Trans. Amer. Math. Soc. 102 (1962), 373–382. MR 137105, DOI 10.1090/S0002-9947-1962-0137105-X
- John Stallings, Group theory and three-dimensional manifolds, Yale Mathematical Monographs, vol. 4, Yale University Press, New Haven, Conn.-London, 1971. A James K. Whittemore Lecture in Mathematics given at Yale University, 1969. MR 0415622 E. C. Zeeman, Seminar on combinatorial topology, Inst. Hautes Études Sci. Publ. Math. (1963), 9-10.
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 277 (1983), 307-321
- MSC: Primary 57M05; Secondary 20F32, 57M10
- DOI: https://doi.org/10.1090/S0002-9947-1983-0690054-4
- MathSciNet review: 690054