The Atiyah-Singer invariant, torsion invariants, and group actions on spheres
HTML articles powered by AMS MathViewer
- by Donald E. Smith
- Trans. Amer. Math. Soc. 277 (1983), 469-488
- DOI: https://doi.org/10.1090/S0002-9947-1983-0694371-3
- PDF | Request permission
Abstract:
This paper deals with the classification of cyclic group actions on spheres using the Atiyah-Singer invariant and Reidemeister-type torsion. Our main tool is the computation of the group of relative homotopy triangulations of the product of a disk and a lens space. These results are applied to obtain lower bounds on the image of an equivariant $J$-homomorphism.References
- J. F. Adams, On the groups $J(X)$. IV, Topology 5 (1966), 21β71. MR 198470, DOI 10.1016/0040-9383(66)90004-8
- M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes. II. Applications, Ann. of Math. (2) 88 (1968), 451β491. MR 232406, DOI 10.2307/1970721
- M. F. Atiyah and I. M. Singer, The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546β604. MR 236952, DOI 10.2307/1970717
- Anthony Bak, Odd dimension surgery groups of odd torsion groups vanish, Topology 14 (1975), no.Β 4, 367β374. MR 400263, DOI 10.1016/0040-9383(75)90021-X
- William Browder and Ted Petrie, Diffeomorphisms of manifolds and semifree actions on homotopy spheres, Bull. Amer. Math. Soc. 77 (1971), 160β163. MR 273636, DOI 10.1090/S0002-9904-1971-12646-0
- Pierre E. Conner, Differentiable periodic maps, 2nd ed., Lecture Notes in Mathematics, vol. 738, Springer, Berlin, 1979. MR 548463
- John Ewing, Spheres as fixed point sets, Quart. J. Math. Oxford Ser. (2) 27 (1976), no.Β 108, 445β455. MR 431233, DOI 10.1093/qmath/27.4.445
- John Ewing, Semifree actions on finite groups on homotopy spheres, Trans. Amer. Math. Soc. 245 (1978), 431β442. MR 511421, DOI 10.1090/S0002-9947-1978-0511421-3 D. Husemoller, Fibre bundles, Graduate Texts in Math., Vol. 20, Springer-Verlag, Berlin and New York, 1966.
- John W. Milnor and Michel A. Kervaire, Bernoulli numbers, homotopy groups, and a theorem of Rohlin, Proc. Internat. Congress Math. 1958., Cambridge Univ. Press, New York, 1960, pp.Β 454β458. MR 0121801
- R. Lashof and M. Rothenberg, $G$-smoothing theory, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp.Β 211β266. MR 520506 J. P. May, The homotopical foundations of algebraic topology, Mimeo, Univ. of Chicago.
- J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358β426. MR 196736, DOI 10.1090/S0002-9904-1966-11484-2
- John W. Milnor and James D. Stasheff, Characteristic classes, Annals of Mathematics Studies, No. 76, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. MR 0440554
- Mel Rothenberg, Torsion invariants and finite transformation groups, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp.Β 267β311. MR 520507
- Melvin Rothenberg, Differentiable group actions on spheres, Proc. Advanced Study Inst. on Algebraic Topology (Aarhus, 1970) Aarhus Univ., Matematisk Inst., Aarhus, 1970, pp.Β 455β475. MR 0301764
- M. Rothenberg and J. Sondow, Nonlinear smooth representations of compact Lie groups, Pacific J. Math. 84 (1979), no.Β 2, 427β444. MR 568660
- Reinhard Schultz, Homotopy sphere pairs admitting semifree differentiable actions, Amer. J. Math. 96 (1974), 308β323. MR 368053, DOI 10.2307/2373635
- Reinhard Schultz, Smooth actions of small groups on exotic spheres, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp.Β 155β160. MR 520503
- Reinhard Schultz, Differentiable group actions on homotopy spheres. I. Differential structure and the knot invariant, Invent. Math. 31 (1975), no.Β 2, 105β128. MR 405471, DOI 10.1007/BF01404111 β, Differentiable group actions on homotopy spheres. II, preprint.
- Julius L. Shaneson, Wallβs surgery obstruction groups for $G\times Z$, Ann. of Math. (2) 90 (1969), 296β334. MR 246310, DOI 10.2307/1970726
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- C. T. C. Wall, Non-additivity of the signature, Invent. Math. 7 (1969), 269β274. MR 246311, DOI 10.1007/BF01404310
- C. T. C. Wall, Surgery on compact manifolds, London Mathematical Society Monographs, No. 1, Academic Press, London-New York, 1970. MR 0431216
- Larry Smith, The $e$ invariant and finite coverings, Indiana Univ. Math. J. 24 (1974/75), 659β675. MR 362370, DOI 10.1512/iumj.1975.24.24051
- Robert E. Stong, Notes on cobordism theory, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. Mathematical notes. MR 0248858
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 277 (1983), 469-488
- MSC: Primary 57S25; Secondary 55Q50
- DOI: https://doi.org/10.1090/S0002-9947-1983-0694371-3
- MathSciNet review: 694371