Extension of Wiener’s Tauberian identity and multipliers on the Marcinkiewicz space
HTML articles powered by AMS MathViewer
- by Ka-Sing Lau
- Trans. Amer. Math. Soc. 277 (1983), 489-506
- DOI: https://doi.org/10.1090/S0002-9947-1983-0694372-5
- PDF | Request permission
Abstract:
This is a continuation of the work of Bertrandias, Lee and Lau on Wiener’s generalized harmonic analysis. Among the other results, we extend Wiener’s Tauberian identity to cover a larger class of functions; we characterize the multipliers on the Marcinkiewicz space ${\mathcal {M}^2}$, and we obtain a Tauberian theorem on ${\mathcal {M}^2}$ with full generality.References
- Kazuo Anzai, Sumiyuki Koizumi, and Katsuo Matsuoka, On the Wiener formula of functions of two variables, Tokyo J. Math. 3 (1980), no. 2, 249–270. MR 605092, DOI 10.3836/tjm/1270472996 J. Bertrandias, Espaces de fonctions bornées et continues en moyenne asymptotique d’ordre $p$, Bull. Soc. Math. France 5 (1966).
- Jean-Paul Bertrandias, Opérateurs subordinatifs sur des espaces de fonctions bornées en moyenne quadratique, J. Math. Pures Appl. (9) 52 (1973), 27–63. MR 399928
- N. Bourbaki, Éléments de mathématique. Fasc. XXXV. Livre VI: Intégration. Chapitre IX: Intégration sur les espaces topologiques séparés, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1343, Hermann, Paris, 1969 (French). MR 0276436
- G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. I, Math. Z. 27 (1928), no. 1, 565–606. MR 1544927, DOI 10.1007/BF01171116
- Ronald Larsen, An introduction to the theory of multipliers, Die Grundlehren der mathematischen Wissenschaften, Band 175, Springer-Verlag, New York-Heidelberg, 1971. MR 0435738, DOI 10.1007/978-3-642-65030-7
- Ka Sing Lau, On the Banach spaces of functions with bounded upper means, Pacific J. Math. 91 (1980), no. 1, 153–172. MR 612895, DOI 10.2140/pjm.1980.91.153
- Ka Sing Lau, The class of convolution operators on the Marcinkiewicz spaces, Ann. Inst. Fourier (Grenoble) 31 (1981), no. 3, viii, 225–243 (English, with French summary). MR 638624
- Ka Sing Lau and Jonathan K. Lee, On generalized harmonic analysis, Trans. Amer. Math. Soc. 259 (1980), no. 1, 75–97. MR 561824, DOI 10.1090/S0002-9947-1980-0561824-5 J. Marcinkiewicz, Une remarque sur les espaces de M. Besicovitch, C. R. Acad. Sci. Paris Ser. A-B 208 (1939), 157-159.
- P. Masani, The normality of time-invariant, subordinative operators in a Hilbert space, Bull. Amer. Math. Soc. 71 (1965), 546–550. MR 177304, DOI 10.1090/S0002-9904-1965-11324-6 —, Commentary on the memoire on generalized harmonic analysis [30a], Norbert Wiener: Collected Work, M.I.T. Press, Cambridge, Mass., 1979, pp. 333-379.
- Norbert Wiener, Generalized harmonic analysis, Acta Math. 55 (1930), no. 1, 117–258. MR 1555316, DOI 10.1007/BF02546511
- Norbert Wiener, Tauberian theorems, Ann. of Math. (2) 33 (1932), no. 1, 1–100. MR 1503035, DOI 10.2307/1968102 —, Extrapolation, interpolations and smoothing of stationary time series, M.I.T. Press, Cambridge, Mass. and Wiley, New York, 1949.
- Norbert Wiener, The Fourier integral and certain of its applications, Dover Publications, Inc., New York, 1959. MR 0100201
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 277 (1983), 489-506
- MSC: Primary 42A45; Secondary 42A38
- DOI: https://doi.org/10.1090/S0002-9947-1983-0694372-5
- MathSciNet review: 694372