Linear superpositions with mappings which lower dimension
HTML articles powered by AMS MathViewer
- by Y. Sternfeld
- Trans. Amer. Math. Soc. 277 (1983), 529-543
- DOI: https://doi.org/10.1090/S0002-9947-1983-0694374-9
- PDF | Request permission
Abstract:
It is shown that for every $n$-dimensional compact metric space $X$, there exist $2n + 1$ functions $\{ {\varphi _j}\}_{j = 1}^{2n + 1}$ in $C(X)$ and $n$ mappings $\{ {\psi _i}\}_{i = 1}^n$ on $X$ with $1$-dimensional range each, with the following property: for every $0 \leqslant k \leqslant n$, every $k$ tuple $\{ {\psi _{i_l}}\}_{l = 1}^k$ of the ${\psi _i}$’s and every $2(n - k) + 1$ tuple $\{ {\varphi _{{j_m}}}\}_{m = 1}^{2(n - k) + 1}$ of the ${\varphi _j}$’s, each $f \in C(X)$ can be represented as $f(x) = \Sigma _{l = 1}^k{g_l}({\psi _{{i_l}}}(x)) + \Sigma _{m = 1}^{2(n - k) + 1}{h_m}({\varphi _{{j_m}}}(x))$, with ${g_l} \in C({\psi _{{i_l}}}(X))$ and ${h_m} \in C(R)$. It is also shown that in many cases the number $2(n - k) + 1$ is the smallest possible.References
- V. I. Arnol′d, On functions of three variables, Amer. Math. Soc. Transl. (2) 28 (1963), 51–54. MR 0153797
- Calvin F. K. Jung, Mappings on compact metric spaces, Colloq. Math. 19 (1968), 73–76. MR 229215, DOI 10.4064/cm-19-1-73-76
- James Keesling, Closed mappings which lower dimension, Colloq. Math. 20 (1969), 237–241. MR 248768, DOI 10.4064/cm-20-2-237-241
- A. N. Kolmogorov, On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition, Dokl. Akad. Nauk SSSR 114 (1957), 953–956 (Russian). MR 0111809 K. Kuratowski, Topology. II, Academic Press, New York, 1968.
- A. Lelek, On mappings that change dimensions of spheres, Colloq. Math. 10 (1963), 45–48. MR 152990, DOI 10.4064/cm-10-1-45-48 K. Menger, Kurventheorie, Teubner, Leipzig, 1932.
- Phillip A. Ostrand, Dimension of metric spaces and Hilbert’s problem $13$, Bull. Amer. Math. Soc. 71 (1965), 619–622. MR 177391, DOI 10.1090/S0002-9904-1965-11363-5
- Y. Sternfeld, Uniformly separating families of functions, Israel J. Math. 29 (1978), no. 1, 61–91. MR 487991, DOI 10.1007/BF02760402
- Y. Sternfeld, Superpositions of continuous functions, J. Approx. Theory 25 (1979), no. 4, 360–368. MR 535937, DOI 10.1016/0021-9045(79)90022-4
- Y. Sternfeld, Dimension of subsets of product spaces, Proc. Amer. Math. Soc. 82 (1981), no. 3, 452–454. MR 612738, DOI 10.1090/S0002-9939-1981-0612738-X —, Uniformly separating families of functions. II, preprint.
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 277 (1983), 529-543
- MSC: Primary 26B40; Secondary 54F45
- DOI: https://doi.org/10.1090/S0002-9947-1983-0694374-9
- MathSciNet review: 694374