Ambiently universal sets in $E^{n}$
HTML articles powered by AMS MathViewer
- by David G. Wright
- Trans. Amer. Math. Soc. 277 (1983), 655-664
- DOI: https://doi.org/10.1090/S0002-9947-1983-0694381-6
- PDF | Request permission
Abstract:
For each closed set $X$ in ${E^n}$ of dimension at most $n - 3$, we show that $X$ fails to be ambiently universal with respect to Cantor sets in ${E^n}$; i.e., we find a Cantor set $Y$ in ${E^n}$ so that for any self-homeomorphism $h$ of ${E^n}$, $h(Y)$ is not contained in $X$. This result answers a question posed by H. G. Bothe and completes the understanding of ambiently universal sets in ${E^n}$.References
- L. Antoine, Sur l’homeomorphie de deux figures et de leur voisinages, J. Math. Pures Appl. 86 (1921), 221-325.
- R. H. Bing, Tame Cantor sets in $E^{3}$, Pacific J. Math. 11 (1961), 435–446. MR 130679, DOI 10.2140/pjm.1961.11.435
- R. H. Bing, A homeomorphism between the $3$-sphere and the sum of two solid horned spheres, Ann. of Math. (2) 56 (1952), 354–362. MR 49549, DOI 10.2307/1969804
- H. G. Bothe, Universalmengen bezüglich der Lage im $E^{n}$, Fund. Math. 56 (1964), 203–212 (German). MR 176440, DOI 10.4064/fm-56-2-203-212
- H. G. Bothe, Zur Lage null- und eindimensionaler Punktmengen im $E^{3}$, Fund. Math. 58 (1966), 1–30 (German). MR 199849, DOI 10.4064/fm-58-1-1-30
- Hans Günter Bothe, Zwei Universalmengen im euklidischen Raum, Math. Nachr. 39 (1969), 117–133 (German). MR 240795, DOI 10.1002/mana.19690390107
- H. G. Bothe, Ein eindimensionales Kompaktum im $E^{3}$, das sich nicht lagetreu in die Mengersche Universalkurve einbetten lässt, Fund. Math. 54 (1964), 251–258 (German). MR 169217, DOI 10.4064/fm-54-3-251-258
- J. W. Cannon, The recognition problem: what is a topological manifold?, Bull. Amer. Math. Soc. 84 (1978), no. 5, 832–866. MR 494113, DOI 10.1090/S0002-9904-1978-14527-3
- J. W. Cannon and R. J. Daverman, Cell-like decompositions arising from mismatched sewings: applications to $4$-manifolds, Fund. Math. 111 (1981), no. 3, 211–233. MR 611761, DOI 10.4064/fm-111-3-211-233
- Robert J. Daverman, On the scarcity of tame disks in certain wild cells, Fund. Math. 79 (1973), no. 1, 63–77. MR 326742, DOI 10.4064/fm-79-1-63-77
- Robert J. Daverman, On the absence of tame disks in certain wild cells, Geometric topology (Proc. Conf., Park City, Utah, 1974) Lecture Notes in Math., Vol. 438, Springer, Berlin, 1975, pp. 142–155. MR 0400236
- W. T. Eaton, A generalization of the dog bone space to $E^{n}$, Proc. Amer. Math. Soc. 39 (1973), 379–387. MR 322877, DOI 10.1090/S0002-9939-1973-0322877-4
- Robert D. Edwards, Demension theory. I, Geometric topology (Proc. Conf., Park City, Utah, 1974) Lecture Notes in Math., Vol. 438, Springer, Berlin, 1975, pp. 195–211. MR 0394678
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR 0006493
- D. R. McMillan Jr. and Harry Row, Tangled embeddings of one-dimensional continua, Proc. Amer. Math. Soc. 22 (1969), 378–385. MR 246267, DOI 10.1090/S0002-9939-1969-0246267-7
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112 M. Starbird, There is no universal Cantor set in ${E^3}$, preprint.
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 277 (1983), 655-664
- MSC: Primary 54C25; Secondary 57N35
- DOI: https://doi.org/10.1090/S0002-9947-1983-0694381-6
- MathSciNet review: 694381