Rees matrix covers for locally inverse semigroups
HTML articles powered by AMS MathViewer
- by D. B. McAlister
- Trans. Amer. Math. Soc. 277 (1983), 727-738
- DOI: https://doi.org/10.1090/S0002-9947-1983-0694385-3
- PDF | Request permission
Abstract:
A regular semigroup $S$ is locally inverse if each local submonoid $eSe$, $e$ an idempotent, is an inverse semigroup. It is shown that every locally inverse semigroup is an image of a regular Rees matrix semigroup, over an inverse semigroup, by a homomorphism $\theta$ which is one-to-one on each local submonoid; such a homomorphism is called a local isomorphism. Regular semigroups which are locally isomorphic images of regular Rees matrix semigroups over semilattices are also characterized.References
- Karl Byleen, Regular four-spiral semigroups, idempotent-generated semigroups and the Rees construction, Semigroup Forum 22 (1981), no. 2, 97–100. MR 606186, DOI 10.1007/BF02572789
- Karl Byleen, John Meakin, and Francis Pastijn, The fundamental four-spiral semigroup, J. Algebra 54 (1978), no. 1, 6–26. MR 511454, DOI 10.1016/0021-8693(78)90018-2
- T. E. Hall, On regular semigroups whose idempotents form a subsemigroup, Bull. Austral. Math. Soc. 1 (1969), 195–208. MR 249527, DOI 10.1017/S0004972700041447
- D. B. McAlister, Groups, semilattices and inverse semigroups. I, II, Trans. Amer. Math. Soc. 192 (1974), 227–244; ibid. 196 (1974), 351–370. MR 357660, DOI 10.1090/S0002-9947-1974-0357660-2
- D. B. McAlister, Regular Rees matrix semigroups and regular Dubreil-Jacotin semigroups, J. Austral. Math. Soc. Ser. A 31 (1981), no. 3, 325–336. MR 633441
- K. S. S. Nambooripad, Structure of regular semigroups. I, Mem. Amer. Math. Soc. 22 (1979), no. 224, vii+119. MR 546362, DOI 10.1090/memo/0224
- K. S. Subramonian Nambooripad, The natural partial order on a regular semigroup, Proc. Edinburgh Math. Soc. (2) 23 (1980), no. 3, 249–260. MR 620922, DOI 10.1017/S0013091500003801
- F. Pastijn, Rectangular bands of inverse semigroups, Simon Stevin 56 (1982), no. 1-2, 3–95. MR 662981
- F. Pastijn, The structure of pseudo-inverse semigroups, Trans. Amer. Math. Soc. 273 (1982), no. 2, 631–655. MR 667165, DOI 10.1090/S0002-9947-1982-0667165-1 —, Structure theorems for pseudo-inverse semigroups (Proc. Sympos. Regular Semigroups, N.I.U., April, 1979), Dept. of Math. Sci., Northern Illinois University.
- F. Pastijn, Regular locally testable semigroups as semigroups of quasi-ideals, Acta Math. Acad. Sci. Hungar. 36 (1980), no. 1-2, 161–166. MR 605186, DOI 10.1007/BF01897107
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 277 (1983), 727-738
- MSC: Primary 20M15; Secondary 20M10
- DOI: https://doi.org/10.1090/S0002-9947-1983-0694385-3
- MathSciNet review: 694385