Strongly Cohen-Macaulay schemes and residual intersections
HTML articles powered by AMS MathViewer
- by Craig Huneke
- Trans. Amer. Math. Soc. 277 (1983), 739-763
- DOI: https://doi.org/10.1090/S0002-9947-1983-0694386-5
- PDF | Request permission
Abstract:
This paper studies the local properties of closed subschemes $Y$ in Cohen-Macaulay schemes $X$ such that locally the defining ideal of $Y$ in $X$ has the property that its Koszul homology is Cohen-Macaulay. Whenever this occurs $Y$ is said to be strongly Cohen-Macaulay in $X$. This paper proves several facts about such embeddings, chiefly with reference to the residual intersections of $Y$ in $X$. The main result states that any residual intersection of $Y$ in $X$ is again Cohen-Macaulay.References
- M. Artin and M. Nagata, Residual intersections in Cohen-Macaulay rings, J. Math. Kyoto Univ. 12 (1972), 307–323. MR 301006, DOI 10.1215/kjm/1250523522
- Lâcezar Avramov and Jürgen Herzog, The Koszul algebra of a codimension $2$ embedding, Math. Z. 175 (1980), no. 3, 249–260. MR 602637, DOI 10.1007/BF01163026
- David A. Buchsbaum and David Eisenbud, What makes a complex exact?, J. Algebra 25 (1973), 259–268. MR 314819, DOI 10.1016/0021-8693(73)90044-6 R. Fossum, H. Foxby, P. Griffith and I. Reiten, Minimal injective resolutions with applications to dualizing modules and Gorenstein modules, Inst. Hautes Études Sci. Publ. Math. 45 (1976).
- Tor H. Gulliksen and Gerson Levin, Homology of local rings, Queen’s Papers in Pure and Applied Mathematics, No. 20, Queen’s University, Kingston, Ont., 1969. MR 0262227
- Robin Hartshorne and Arthur Ogus, On the factoriality of local rings of small embedding codimension, Comm. Algebra 1 (1974), 415–437. MR 347821, DOI 10.1080/00927877408548627 J. Herzog, Komplexe, Auflosungen und Dualitat in der lokalen Algebra, Habilitationsschriff, Regensburg Universität, 1974.
- Jürgen Herzog, Certain complexes associated to a sequence and a matrix, Manuscripta Math. 12 (1974), 217–248. MR 357414, DOI 10.1007/BF01155515
- J. Herzog, A. Simis, and W. V. Vasconcelos, Approximation complexes of blowing-up rings. II, J. Algebra 82 (1983), no. 1, 53–83. MR 701036, DOI 10.1016/0021-8693(83)90173-4
- J. Herzog, A. Simis, and W. V. Vasconcelos, Approximation complexes of blowing-up rings. II, J. Algebra 82 (1983), no. 1, 53–83. MR 701036, DOI 10.1016/0021-8693(83)90173-4
- Craig Huneke, Linkage and the Koszul homology of ideals, Amer. J. Math. 104 (1982), no. 5, 1043–1062. MR 675309, DOI 10.2307/2374083 —, The Koszul homology of an ideal, Advances in Math. (to appear).
- Craig Huneke, On the associated graded ring of an ideal, Illinois J. Math. 26 (1982), no. 1, 121–137. MR 638557 —, The theory of $d$-sequences and powers of ideals, Advances in Math. (to appear). —, The invariants of liaison, Proc. Third Midwest Algebraic Geom. Conf., Lecture Notes in Math., Springer-Verlag, Berlin and New York (to appear).
- Steven L. Kleiman, Multiple-point formulas. I. Iteration, Acta Math. 147 (1981), no. 1-2, 13–49. MR 631086, DOI 10.1007/BF02392866 M. Kühl, Über die symmetrische Algebra eines Ideals, dissertation, Essen, 1981.
- Stephen Lichtenbaum, On the vanishing of $\textrm {Tor}$ in regular local rings, Illinois J. Math. 10 (1966), 220–226. MR 188249
- Saunders Mac Lane, Homology, Die Grundlehren der mathematischen Wissenschaften, Band 114, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0156879
- C. Peskine and L. Szpiro, Liaison des variétés algébriques. I, Invent. Math. 26 (1974), 271–302 (French). MR 364271, DOI 10.1007/BF01425554 —, Dimension projective finie et cohomologie locale, Inst. Hautes Études Sci. Publ. Math. 42 (1973).
- A. Simis and W. V. Vasconcelos, The syzygies of the conormal module, Amer. J. Math. 103 (1981), no. 2, 203–224. MR 610474, DOI 10.2307/2374214
- Giuseppe Valla, On the symmetric and Rees algebras of an ideal, Manuscripta Math. 30 (1980), no. 3, 239–255. MR 557107, DOI 10.1007/BF01303330
- W. V. Vasconcelos, On the homology of $I/I^{2}$, Comm. Algebra 6 (1978), no. 17, 1801–1809. MR 508082, DOI 10.1080/00927877808822322
- Junzo Watanabe, A note on Gorenstein rings of embedding codimension three, Nagoya Math. J. 50 (1973), 227–232. MR 319985
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 277 (1983), 739-763
- MSC: Primary 13H10; Secondary 14M05
- DOI: https://doi.org/10.1090/S0002-9947-1983-0694386-5
- MathSciNet review: 694386