The optimal accuracy of difference schemes
HTML articles powered by AMS MathViewer
- by Arieh Iserles and Gilbert Strang
- Trans. Amer. Math. Soc. 277 (1983), 779-803
- DOI: https://doi.org/10.1090/S0002-9947-1983-0694388-9
- PDF | Request permission
Abstract:
We consider difference approximations to the model hyperbolic equation ${u_{t}} = {u_x}$ which compute each new value $U(x,t + \Delta t)$ as a combination of the known values $U(x - r\Delta x,t),\ldots ,U(x + s\Delta x,\Delta t)$. For such schemes we find the optimal order of accuracy: stability is possible for small $\Delta t/\Delta x$ if and only if $p \leqslant \min \{ {r + s,2r + 2,2s} \}$. A similar bound is established for implicit methods. In this case the most accurate schemes are based on Padé approximations $P(z)/Q(z)$ to ${z^\lambda }$ near $z = 1$, and we find an expression for the difference $|Q{|^2} - |P{|^2}$; this allows us to test the von Neumann condition $|P/Q| \leqslant 1$. We also determine the number of zeros of $Q$ in the unit circle, which decides whether the implicit part is uniformly invertible.References
- George A. Baker Jr., Essentials of Padé approximants, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0454459
- Germund G. Dahlquist, A special stability problem for linear multistep methods, Nordisk Tidskr. Informationsbehandling (BIT) 3 (1963), 27–43. MR 170477, DOI 10.1007/bf01963532
- Germund Dahlquist, Convergence and stability in the numerical integration of ordinary differential equations, Math. Scand. 4 (1956), 33–53. MR 80998, DOI 10.7146/math.scand.a-10454
- James W. Daniel and Ramon E. Moore, Computation and theory in ordinary differential equations, W. H. Freeman and Co., San Francisco, Calif., 1970 (German). MR 0267765
- Byron L. Ehle, $A$-stable methods and Padé approximations to the exponential, SIAM J. Math. Anal. 4 (1973), 671–680. MR 331787, DOI 10.1137/0504057
- Björn Engquist and Stanley Osher, One-sided difference approximations for nonlinear conservation laws, Math. Comp. 36 (1981), no. 154, 321–351. MR 606500, DOI 10.1090/S0025-5718-1981-0606500-X A. Erdelyi, et al., Higher transcendental functions. I, McGraw-Hill, New York, 1953.
- A. Iserles and M. J. D. Powell, On the $A$-acceptability of rational approximations that interpolate the exponential function, IMA J. Numer. Anal. 1 (1981), no. 3, 241–251. MR 641308, DOI 10.1093/imanum/1.3.241
- Arieh Iserles, Order stars and a saturation theorem for first-order hyperbolics, IMA J. Numer. Anal. 2 (1982), no. 1, 49–61. MR 654266, DOI 10.1093/imanum/2.1.49
- Arieh Iserles, A note on Padé approximations and generalized hypergeometric functions, BIT 19 (1979), no. 4, 543–545. MR 559965, DOI 10.1007/BF01931272
- Arieh Iserles, On the generalized Padé approximations to the exponential function, SIAM J. Numer. Anal. 16 (1979), no. 4, 631–636. MR 537277, DOI 10.1137/0716048
- Peter D. Lax, On the stability of difference approximations to solutions of hyperbolic equations with variable coefficients, Comm. Pure Appl. Math. 14 (1961), 497–520. MR 145686, DOI 10.1002/cpa.3160140324
- Earl D. Rainville, Special functions, The Macmillan Company, New York, 1960. MR 0107725 G. Strang, Trigonometric polynomials and difference methods of maximum accuracy, J. Math. Phys. 41 (1962), 147-154.
- Gilbert Strang, Accurate partial difference methods. II. Non-linear problems, Numer. Math. 6 (1964), 37–46. MR 166942, DOI 10.1007/BF01386051
- Gilbert Strang, Wiener-Hopf difference equations, J. Math. Mech. 13 (1964), 85–96. MR 0160335
- Gilbert Strang, Implicit difference methods for initial-boundary value problems, J. Math. Anal. Appl. 16 (1966), 188–198. MR 205496, DOI 10.1016/0022-247X(66)90196-X G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R.I., 1939.
- G. Wanner, E. Hairer, and S. P. Nørsett, Order stars and stability theorems, BIT 18 (1978), no. 4, 475–489. MR 520756, DOI 10.1007/BF01932026
- O. B. Widlund, On Lax’s theorem on Friedrichs type finite difference schemes, Comm. Pure Appl. Math. 24 (1971), 117–123. MR 275693, DOI 10.1002/cpa.3160240202
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 277 (1983), 779-803
- MSC: Primary 65M10; Secondary 41A21
- DOI: https://doi.org/10.1090/S0002-9947-1983-0694388-9
- MathSciNet review: 694388