Uniqueness of $\Gamma _{p}$ in the Gross-Koblitz formula for Gauss sums
HTML articles powered by AMS MathViewer
- by Alan Adolphson
- Trans. Amer. Math. Soc. 278 (1983), 57-63
- DOI: https://doi.org/10.1090/S0002-9947-1983-0697060-4
- PDF | Request permission
Abstract:
It is determined what continuous functions besides the $p$-adic gamma function make the Gross-Koblitz formula valid.References
- Maurizio Boyarsky, $p$-adic gamma functions and Dwork cohomology, Trans. Amer. Math. Soc. 257 (1980), no. 2, 359–369. MR 552263, DOI 10.1090/S0002-9947-1980-0552263-1
- B. Dwork, $p$-adic cycles, Inst. Hautes Études Sci. Publ. Math. 37 (1969), 27–115. MR 294346, DOI 10.1007/BF02684886
- Benedict H. Gross and Neal Koblitz, Gauss sums and the $p$-adic $\Gamma$-function, Ann. of Math. (2) 109 (1979), no. 3, 569–581. MR 534763, DOI 10.2307/1971226
- Yasuo Morita, A $p$-adic analogue of the $\Gamma$-function, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 22 (1975), no. 2, 255–266. MR 424762
- Bernard Dwork, On the zeta function of a hypersurface, Inst. Hautes Études Sci. Publ. Math. 12 (1962), 5–68. MR 159823, DOI 10.1007/BF02684275
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 278 (1983), 57-63
- MSC: Primary 11S80; Secondary 11L05
- DOI: https://doi.org/10.1090/S0002-9947-1983-0697060-4
- MathSciNet review: 697060