A new bound for the Steiner ratio
HTML articles powered by AMS MathViewer
- by D. Z. Du and F. K. Hwang
- Trans. Amer. Math. Soc. 278 (1983), 137-148
- DOI: https://doi.org/10.1090/S0002-9947-1983-0697065-3
- PDF | Request permission
Abstract:
Let $V$ denote a given set of $n$ points in the euclidean plane. A Steiner minimal tree for $V$ is the shortest network (clearly, it has to be a tree) interconnecting $V$. Junctions of the network which are not in $V$ are called Steiner points (those in $V$ will be called regular points). A shortest tree interconnecting $V$ without using any Steiner points is called a minimal tree. Let $\sigma (V)$ and $\mu (V)$ denote the lengths of a Steiner minimal tree and a minimal tree, respectively. Define $\rho$ to be the greatest lower bound for the ratio $\sigma (V)/\mu (V)$ over all $V$. We prove $\rho > .8$.References
- F. R. K. Chung and F. K. Hwang, A lower bound for the Steiner tree problem, SIAM J. Appl. Math. 34 (1978), no. 1, 27–36. MR 482833, DOI 10.1137/0134003
- E. N. Gilbert and H. O. Pollak, Steiner minimal trees, SIAM J. Appl. Math. 16 (1968), 1–29. MR 223269, DOI 10.1137/0116001
- R. L. Graham and F. K. Hwang, A remark on Steiner minimal trees, Bull. Inst. Math. Acad. Sinica 4 (1976), no. 1, 177–182. MR 437371
- Z. A. Melzak, On the problem of Steiner, Canad. Math. Bull. 4 (1961), 143–148. MR 125466, DOI 10.4153/CMB-1961-016-2
- H. O. Pollak, Some remarks on the Steiner problem, J. Combinatorial Theory Ser. A 24 (1978), no. 3, 278–295. MR 491279, DOI 10.1016/0097-3165(78)90058-4
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 278 (1983), 137-148
- MSC: Primary 05C05; Secondary 51M15
- DOI: https://doi.org/10.1090/S0002-9947-1983-0697065-3
- MathSciNet review: 697065