Bounds for integral solutions of diagonal cubic equations
HTML articles powered by AMS MathViewer
- by Ka Hin Leung
- Trans. Amer. Math. Soc. 278 (1983), 183-195
- DOI: https://doi.org/10.1090/S0002-9947-1983-0697069-0
- PDF | Request permission
Abstract:
It was proved by Davenport [3] that for the nonzero integral ${\lambda _i}$ the equation ${\lambda _1}x_1^3 + \cdots + {\lambda _8}x_8^3 = 0$ always has a nontrivial integral solution. In this paper, we investigate the bounds of nontrivial integral solutions in terms of ${\lambda _1}, \ldots ,{\lambda _8}$.References
- H. Davenport, On Waring’s problem for cubes, Acta Math. 71 (1939), 123–143. MR 26, DOI 10.1007/BF02547752
- H. Davenport, Indefinite quadratic forms in many variables, Mathematika 3 (1956), 81–101. MR 85303, DOI 10.1112/S0025579300001741
- H. Davenport, Cubic forms in thirty-two variables, Philos. Trans. Roy. Soc. London Ser. A 251 (1959), 193–232. MR 105394, DOI 10.1098/rsta.1959.0002
- H. Davenport, Analytic methods for Diophantine equations and Diophantine inequalities, Ann Arbor Publishers, Ann Arbor, Mich., 1963. The University of Michigan, Fall Semester, 1962. MR 0159786
- H. Davenport and H. Heilbronn, On indefinite quadratic forms in five variables, J. London Math. Soc. 21 (1946), 185–193. MR 20578, DOI 10.1112/jlms/s1-21.3.185
- H. Davenport and K. F. Roth, The solubility of certain Diophantine inequalities, Mathematika 2 (1955), 81–96. MR 75989, DOI 10.1112/S0025579300000723
- I. Danicic, The solubility of certain Diophantine inequalities, Proc. London Math. Soc. (3) 8 (1958), 161–176. MR 96636, DOI 10.1112/plms/s3-8.2.161
- D. J. Lewis, Cubic congruences, Michigan Math. J. 4 (1957), 85–95. MR 84013
- Jane Pitman and D. Ridout, Diagonal cubic equations and inequalities, Proc. Roy. Soc. London Ser. A 297 (1967), 476–502. MR 215785, DOI 10.1098/rspa.1967.0082
- Trygve Nagell, Introduction to Number Theory, John Wiley & Sons, Inc., New York; Almqvist & Wiksell, Stockholm, 1951. MR 0043111
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 278 (1983), 183-195
- MSC: Primary 11D25; Secondary 11P55
- DOI: https://doi.org/10.1090/S0002-9947-1983-0697069-0
- MathSciNet review: 697069