Sign changes in harmonic analysis on reductive groups
HTML articles powered by AMS MathViewer
- by Robert E. Kottwitz
- Trans. Amer. Math. Soc. 278 (1983), 289-297
- DOI: https://doi.org/10.1090/S0002-9947-1983-0697075-6
- PDF | Request permission
Abstract:
Let $G$ be a connected reductive group over a field $F$. In this note the author constructs an element $e(G)$ of the Brauer group of $F$. The square of this element is trivial. For a local field, $e(G)$ may be regarded as an element of $\{ \pm 1\}$ and is needed for harmonic analysis on reductive groups over that field. For a global field there is a product formula.References
- Daniel Flath, A comparison of the automorphic representations of $\textrm {GL}(3)$ and its twisted forms, Pacific J. Math. 97 (1981), no. 2, 373–402. MR 641166
- Stephen Gelbart and Hervé Jacquet, Forms of $\textrm {GL}(2)$ from the analytic point of view, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 213–251. MR 546600
- Jean Giraud, Cohomologie non abélienne, Die Grundlehren der mathematischen Wissenschaften, Band 179, Springer-Verlag, Berlin-New York, 1971 (French). MR 0344253
- H. Jacquet and R. P. Langlands, Automorphic forms on $\textrm {GL}(2)$, Lecture Notes in Mathematics, Vol. 114, Springer-Verlag, Berlin-New York, 1970. MR 0401654
- R. Kottwitz, Orbital integrals and base change, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 111–113. MR 546612
- R. P. Langlands, Stable conjugacy: definitions and lemmas, Canadian J. Math. 31 (1979), no. 4, 700–725. MR 540901, DOI 10.4153/CJM-1979-069-2
- Stephen S. Shatz, Profinite groups, arithmetic, and geometry, Annals of Mathematics Studies, No. 67, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. MR 0347778
- D. Shelstad, Characters and inner forms of a quasi-split group over $\textbf {R}$, Compositio Math. 39 (1979), no. 1, 11–45. MR 539000
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 278 (1983), 289-297
- MSC: Primary 22E35; Secondary 22E30
- DOI: https://doi.org/10.1090/S0002-9947-1983-0697075-6
- MathSciNet review: 697075