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THE GAUSS-LUCAS THEOREM AND JENSEN POLYNOMIALS

BY

THOMAS CRAVEN1 AND GEORGE CSORDAS

Abstract. A characterization is given of the sequences {"fyj^o vvith the property

that, for any complex polynomial/(z) = 1akzk and convex region Kcontaining the

origin and the zeros of/, the zeros of 2 y¡<akzk again lie in K. Many applications and

related results are also given. This work leads to a study of the Taylor coefficients of

entire functions of type I in the Laguerre-Pólya class. If the power series of such a

function is given by 1 ykzk/k\ and the sequence {yk} is positive and increasing, then

the sequence satisfies an infinite collection of strong conditions on the differences,

namely A"yA > 0 for all n, k.

1. Introduction. This paper is concerned with functions of type I in the Laguerre-

Pólya class; i.e. real entire functions which are the uniform limits, on compact

subsets of the plane, of polynomials with only real zeros, all of which have the same

sign. Let us represent such a function as a series <&(z) = "2k=0ykzk/k\. Pólya and

Schur [PS] gave two alternate characterizations of this class of entire functions.

(1.1) The series 2 ykzk/k\ converges in the whole plane and the entire function

S>(z) or $(-z) can be represented in the form ceazzm]\"=x(l + z/zn) where a > 0,

zn > 0, c E R, 0 *£ w < oo, 2^=, z~x < oo and m is a nonnegative integer.

(1.2) For each integer ai s* 0, the Jensen polynomial gn(x) = 1"k=Q("k)ykxk has only

real zeros, all of which have the same sign.

For any polynomial or entire function fix) = 2 akxk we write T[/(x)] = 2 akykxk,

whenever this series converges. Thus the polynomials g„ in (1.2) can be written

T[(l + x)"]. Any sequence of real numbers T = [yk}f=0 which satisfies (1.2) will be

called a multiplier sequence (of the first kind). Pólya and Schur [PS] also showed that

( 1.2) is equivalent to the following much stronger property.

(1.3) For any polynomial/, all of whose zeros are real, the polynomial T[f] again

has only real zeros.

As an example, consider the sequence r = {0,1,2,3,...} corresponding to the

entire function zez. For any polynomial/, we have T[f(x)] — xf'(x). For this

reason, the operators T have been studied as a generalized form of differentiation

(cf. [CC2, CC3]). The main theorem of §2 tells to what extent these operators T
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satisfy the Gauss-Lucas Theorem [Ml, p. 22]. In particular, we prove the following

result:

If T is an increasing nonnegative multiplier sequence, / is an arbitrary complex

polynomial and K is a convex set containing the origin and the zeros off, then all of

the zeros of T[f] lie in K.

In §3 we show that the above theorem remains valid for all nonnegative multiplier

sequences if and only if K is an angle with vertex at the origin and angle opening at

most it.

Finally, in §4 we give a classification of multiplier sequences in terms of intrinsic

properties of the sequence (as opposed to zeros of polynomials or entire functions

incorporating the sequence). In particular, we show that every positive sequence

satisfies a convexity condition, y^ — y^.-, ^yk+x ~ yk, for large k. If the sequence is

increasing, this is true for all k and much stronger conditions also hold.

There are a number of easily proved facts about multiplier sequences which we

shall need later (cf. [CCI]). Let T = {y¿}"=0 be a multiplier sequence. Then:

(i) If yjYi =£ 0, then yk ̂  0 for; < k < /.

(ii) All nonzero terms of T have the same sign or they alternate in sign. (The

former occurs when all the nonzero roots of gn in (1.2) are negative; the latter occurs

when all the nonzero roots are positive.)

(iii) For each positive integer k, the sequence satisfies yk > yk_xyk+x. This is

known as Turán's inequality. It is the only easily tested necessary condition for a

multiplier sequence other than those given in §4.

Our theorems are generally stated only for nonnegative multiplier sequences. By

(ii) above, if the terms of a sequence are not nonnegative, then multiplication of each

term by either -1 or (-1)* (i.e. replacing <b(x) by <b(-x)) yields a sequence all of

whose terms are nonnegative. Thus there is very little loss of generality if we restrict

our attention to nonnegative sequences. On the other hand, leading zeros in the

sequence caused by a factor zm in the product representation (1.1) are harder to

handle because they also cause factorials to be introduced into the sequence. For this

reason, these sequences require careful treatment in the proofs.

2. The Gauss-Lucas Theorem. We begin this section with a simple but very

important lemma describing some restrictions on when two successive coefficients

can be equal for an entire function 0 of type I. This result will be generalized in the

final section. Note that the requirement that $ be transcendental (i.e. not poly-

nomial) is definitely required for our extension of the Gauss-Lucas Theorem.

Lemma 2.1. Let 3>(x) = 2"=o Y** Ve'* 0 ** To ** Yi ** " •, be a transcendental

entire function of type I in the Laguerre-Pólya class.

(a) //, for some nonnegative integer p, yp — yp+x =£ 0, then y0 = y, = ■ ■ • and

4>(x) = y0ex.

(b) If, forp > 0, y0 = y, = • • • = y,_, = 0, but yp ¥= 0, then 0 < yp < yp+x < yp+2
< • • •.
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Proof, (a) The function <t>{p)(x) also belongs to the Laguerre-Pólya class. Thus,

Turán's inequality, when applied to the first three Taylor coefficients of

1

yP yP

shows that yp > yp+2. But by assumption yp <yp+x Y/,+2,sothatyp = yp+l = yp+2.

From this it follows that <bip)(x) - ypex [CC3, Proposition 4.5]. Thus ®(x) = ypex

+ f(x) for some polynomial/. Since $ has only real zeros, we must have that/ = 0

and $(x) = ye* Yo<?

(b) Suppose that y0 = y, = = Y„ 0 and yp ¥= 0. If the sequence {yk+p}k = 0

is not strictly increasing, then there is an integer m > 0 such that 0 < yp < yp+m =

yp+m+x. But then by part (a), $(x) = yp+mex. This contradicts the assumption that

y0 = 0. Thus the sequence {yk+p}™=o 1S strictly increasing.

Lemma 2.2. Let $(x) = 2f=0ykxk/k\ be a transcendental entire function in the

Laguerre-Pólya class. Suppose that the product representation of$(x) has the form

<b(x) = cxse°x II (1 + x/xn),
n=\

0 oo,

where a > 0, xn > 0, c > 0, 2 xn ' < oo and where s is a nonnegative integer. Then

a > 1 ;/ and only if 0 < y0 < y, < y2 <

Proof. We first note that if a # 0, then any entire function $ whose Hadamard

factorization is of the above form is of order one and type | a \ (see, for example,

Boas [B, Lemma 2.10.13, p. 29 and Theorem 3.7.1, p. 51]).

Now suppose that 0 = y0 = y, = • • • = ys_, < ys *s yJ+, < • • •. Let M(r, $) de-

note the maximum modulus of O on the circle \z\= r. Then

M(r,Q) = $(r) = y.fr + y,
j+i

,s+)

si      (s+l)

s+1

+

(5+1)!
+

»-1 rk

a=o K-

Thus it follows that the order of $ is exactly one and that the type, a, of <E> is at least

one.

Conversely, suppose that a > 1. Let

y   '       x5        s!      (j+ 1)!

Then (<j>'/d>)(x) = a + 2 l/(x + x„) so that

(i) yI+1/(5 + l)vs = (*'/*X0) = o + 2 l/x„ > a. Also,

(ii) ®'(x) = c,jcs,ea'*Il(l + x/xnX), where sx = max(0, s - 1), all the zeros -xnX

are those implied by Rolle's theorem or the multiple zeros of O, and a, s» a. The

monotonicity of the sequence {y¿} now follows from (i) and (ii) by induction. The
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same argument shows that  {yk}  is strictly monotone unless $(*) = cex. This

completes the proof of Lemma 2.2.

Remark. The authors wish to thank the referee for suggesting the preceding proof

of Lemma 2.2.

Theorem 2.3. Let <b(x) = 2 ykxk/k\ be a transcendental entire function of type I in

the Laguerre-Pólya class. For each n= 1,2,3,..., let gn(x) - 1"k=Q("k)ykxk denote

the Jensen polynomial associated with Q(x). Then the zeros of gn(x), n = 1,2,3,...,

all lie in [-1,0] if and only if either 0 *£ y0 < y, < • ■ • or 0 > y0 > y, > ■ ■ ■.

Proof. Replacing $(x) by <&(-jc), if necessary, we need only to consider se-

quences {yk} with nonnegative terms. We will first assume that 0 < y0 *£ y, =£ y2 =£

• • •. If for some m^Owe have ym = ym+x, then by Lemma 2.1(a) <&(x) = y0ex.

Thus, in this case g„(x) = y0(l + x)". If 0 < y0 < y, < • • • and <^(x) has no zeros,

then it is easy to see that g„(x) = y0(l + ax)", where, by Lemma 2.2, a > 1. In the

general case with y0 > 0, we consider

Q(x) = ceox Ö (l +—),       0<w
xn

X,

where a > 0, c, x„ > 0 and 2xnx < oo. Since 0 < yk < yk+x, k = 0, 1,2,..., Lemma

2.2 implies that a s* 1. Now for each fixed / > 0, the function

*(-xt) = ce-"'f[ (l-^)

is a transcendental entire function of type I in the Laguerre-Pólya class. Since a > 1,

the function

(2.4) $x(x) = ex$(-xt) = ce°-'">x f[  (l-— )
„=1  V n I

M = 0

also belongs to this class whenever t > I/a. In particular, t > I/o if t > 1. Since

g0(_/ ) - Yo ̂  0, all of the coefficients g„(-t) ¥= 0 for t > 1 and ai = 1,2,3,.... That

is, all the zeros of gn lie in [ -1,0).

We next consider the case when 0 < y0 < y, < • • • and <¡>(x) has a zero of order s

at the origin. That is, we assume that 0 = y0 = • • • = ys_, and 0 < ys < yJ+, < • • •.

Now for a fixed e > 0 we set

00    V (f)

*e(x) = $(x + e) =  2  ^4
k=o      •

k

and observe that (i) lim£-0 Y*r(«) = Y* anti (u) ° < Ya:(£) < Ya;+ i(£) for /c = 0,1,2,....

But then property (ii), in conjunction with the proof given above, implies that for

each e > 0 the Jensen polynomial 2"k=0("k)yk(e)xk, associated with $e(x), has all its

zeros in the interval [-1,0). Finally, using property (i) we see that all the zeros of

g„(x) = 2"k=o(nk)ykxk lie in the closed interval [-1,0].
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Conversely, suppose that all the zeros of g,,(x), n — 1,2,3. lie in [-1,0]. If m

denotes the smallest nonnegative integer such that ym ¥= 0, then ym+k ¥= 0 for

k = 0,1,2,..., since $(x) is by assumption a transcendental function of type I in

the Laguerre-Pólya class. Thus by hypothesis, the polynomial

gm+x(x) = x"'[(m + l)y„, + ym+xx\

has all its zeros in [-1,0]. Consequently, ym < ym+x/(m + 1). Also, for ai s* m + 2,

d"~xgn(x)/dx"~x = Aî!(y„_, + y„x).   Thus,   Rolle's   theorem,   together   with   a

straightforward induction argument, implies that y„ < y„+, for ai = 0,1,2.This

completes the proof of the theorem.

Remark 2.5. If y0 ̂  0 and either $ has an infinite number of zeros or 0 has a

finite number of zeros but o > 1, then it follows from (2.4) that <P, is also a

transcendental entire function (of type I). Consequently, for such functions O, we

have g„(-t) ¥= 0 for / > 1; i.e. the zeros of each g„ all lie in the open interval (-1,0).

If <P has a finite number of zeros, <P(0) > 0, and o = 1, then

$>(x) =exh(x),

where the polynomial h(x) = 1k=0bkxk/k\ has only real negative zeros. Thus in

this case for t > 0,

ex<t>(-xt) = exe-x'h(-xt) = 2 ^p-x".

Hence for t = 1, we obtain h(-x) = 1gn(-l)x"/n\. Thus, comparing coefficients

yields

K = (-l)"g„(-l)   for« = 0,1,2,...,*

and so

g„(-l)=0    if and only if ai > N.

That is, in general the zeros of gn all lie in [-1,0).

In order to facilitate our extension of the Gauss-Lucas Theorem, we introduce the

following definition.

Definition. A sequence T = {yA}"=0 of real numbers is said to possess the

Gauss-Lucas property if it satisfies the following condition. Let f(z) — '2"k=0akzk,

ak E C, be an arbitrary complex polynomial. If K is a convex region containing the

origin and all the zeros of fiz), then the zeros of the polynomial T[/(z)] =

2¡¡=0 akykzk also lie in K.

Next we give a complete characterization of sequences which possess the Gauss-

Lucas property. In addition to the foregoing results, our proof requires the following

classical composition theorem due to Schur [S] and Szegö [Sz] (see also Obreschkoff

[O, p. 26]).

Theorem 2.6 (The Schur-Szegö Composition Theorem). // the zeros of the

polynomial

A(x)=  2 (l)akXk
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lie in a convex region K containing the origin and if the zeros of

B(x)=  i (l)bkxk
k = 0

all lie in the open interval (-1,0), then all the zeros of the composite polynomial

c(x)= 2 (Ï)«*M*
A- = 0

also lie in K.

Remark 2.7. In the preceding theorem we may assume K is closed since it must

contain the convex hull of the origin and the zeros of A(x). Since the roots of any

polynomial vary continuously with the coefficients, the theorem remains true for

polynomials B(x) whose roots lie in the closed interval [-1,0].

Theorem 2.8. Let Y = {yk} be a nonzero sequence of real numbers. Then Y

possesses the Gauss-Lucas property if and only if Y is a multiplier sequence of the first

kind and either 0 < yn < yn+, for n = 0,1,2,..., or 0 > yn > yn+, for n. = 0,1,2,_

Proof. Suppose that the real sequence Y = {yk} has the Gauss-Lucas property.

For a nonnegative integer ai let fix) = (1 + x)" and set K = [-1,0]. Then by

hypothesis all the zeros of Y[f(x)] = *Z"k=Q(nk)ykxk lie in K and a fortiori T is a

multiplier sequence of the first kind. An application of Theorem 2.3 now provides

the desired conclusion.

Conversely, suppose Y — {yk} is a multiplier sequence of the first kind. As usual

we may assume all yk > 0 and y„ < yn+, for ai = 0,1,2,_Thus the function

<¡>(x) = Y[ex] =  1  £rxk = cx*e°x f[  (l +—),       0<w<oo,

k=0 k- n=\\ X»>

where c > 0, o > 0, xn > 0, 2 x~x < oo and s is a nonnegative integer, is an entire

function of type I in the Laguerre-Pólya class. By Theorem 2.3, the zeros of the

Jensen polynomials g„(x) = 2"k=0(k)ykxk all lie in [-1,0]. Now let/(z) = 1"k=0akzk,

ak E C, be an arbitrary complex polynomial. Let A" be a convex region containing

the origin and all the zeros of fiz). Then the Schur-Szegö Composition Theorem

together with Remark 2.7 shows that the roots of Y[f(z)] = 2£=0 okykzk also lie in

the convex region K. This completes the proof of the theorem.

Remark 2.9. As noted in the introduction, the classical example of this theorem is

its application to the sequence Y = {0,1,2,3,...} since T[/(x)] = xf'(x). For this

reason we have had to include the origin as a point of the set K containing the roots

of /. If one does not require the origin to be in K and considers the class of linear

operators which are translation invariant, then differentiation is essentially the only

example. I. Raitchinov [R] has shown that all such linear operators have the form

fiz) i-> cf(s\z) for some constant c.

3. Related results. In this section we look at several directions for extending the

results of the previous section. We consider the extent to which we can replace the

polynomial / by a transcendental entire function. Another direction is to introduce
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the sequence {yk} in other ways such as in the sum 1ykzkf(k)(z)/k\ in Corollary

3.7. In Theorem 3.3 we give a complete characterization of the sets K which satisfy a

Gauss-Lucas type of theorem for all nonnegative multiplier sequences. We begin by

examining the scope of Theorem 2.8 in relation to some known results. Let a and ß

he two nonnegative real numbers, 0 < ß — a < it, and let K denote the angle

ä:= (z E C| a^argz <ß),

where this set is assumed to contain the origin. Let p(z) be any polynomial all of

whose zeros lie in K. Then it is known [L, p. 342] that for any multiplier sequence

r = {yk}, yk > 0, the zeros of the polynomial T[/a(z)] also belong to K. In fact, this

assertion remains valid for certain entire functions fiz) all of whose zeros lie in the

angle K (see, for example, [L, Theorem 8, p. 343]).

For general unbounded convex regions the situation is more complicated. How-

ever, for entire functions of genus zero, we obtain as a consequence of Theorem 2.8

the following corollary (cf. Marden [M2] and Porter [PI, P2]).

Corollary 3.1. Let Y = (y^}, 0 < y0 < y, < • • •, be a multiplier sequence of the

first kind. Let K be a closed unbounded convex region which contains the origin and all

the zeros of the entire function

00/ \

/(*)= n i-f ,   i*ii<i*ai<-,«=iv   z«'

00

=  2 akzk,
k=0

where 2 | zn |"' < oo. Then the zeros of the entire function Y[f(zf] = 2^=0 o.kykzk also

lie in K.

n,-

Proof. By hypothesis lim„_00^/| an | = 0 and by Lemma 2.2 we have lim^^^y^"

= o, 1 < o < oo, so that T[/] is an entire function of type o (see, for example, [B, p.

11]). If

/,(*)= n(i-f).   »=i,2,...,
k=x\   zk>

then by Theorem 2.8 the zeros of the polynomial Y[fn], n = 1,2,..., also lie in K.

Now standard arguments show that the sequence {/„(z)} of polynomials converges

uniformly, on compact subsets of C, to fiz). But then it is easy to infer that the

sequence {T[/n]} of polynomials also converges uniformly, on compact subsets, to

Y[f(z)]. Since the convex region K is closed, Hurwitz's theorem implies that the

zeros of Y[ fiz)] also lie in K. This completes the proof of the corollary.

Remark 3.2. The above corollary can also be extended to certain classes, C(R), of

/{-functions introduced by Korevaar (see [K] and the references contained therein).

An Ä-function is defined as follows. Let R be an unbounded closed set in the

complex plane. Let p(z) be an R-polynomial, that is, p(z) is a polynomial all of

whose zeros lie in R. Then an entire function/,/ z 0, is an R-function (/ E C(R)) if

/ is the uniform limit, on compact subsets of C, of a sequence of Ä-polynomials.
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Thus, for example, if R is the nonpositive portion of the real axis, then C(R) is

precisely the class of entire functions of type I, with nonnegative Taylor coefficients,

in the Laguerre-Pólya class. We also note that Korevaar [K] obtained characteriza-

tions of C(R) in terms of the geometrical properties of the set R.

Finally we remark that the question of extension of our results to real entire

functions of less restricted growth but all whose zeros are real is still open (cf.

Hellerstein and Korevaar [HK]).

Theorem 3.3. Let R be a closed subset of the complex plane. Consider the property

(3.4) For any nonnegative multiplier sequence Y, iff E C(R), then Y[f] E C(R).

Then R satisfies (3.4) if and only if R is an angle of the form {z E C | a *£ arg z < ß},

where 0 < ß — a < tt.

Proof. Assume first that R is an angle as specified. As mentioned above, property

(3.4) holds for polynomials in C(R). A limiting argument as in Corollary 3.1

establishes (3.4) for entire functions in C(R). Conversely, assume R satisfies (3.4).

The fact that R must be an angle follows from the following two properties: (i) If

z0 E R, then R contains the ray from the origin through z0; (ii) R is convex. To

establish property (i), we use the sequence Y = {1, r, r2, r3,...}, r > 0, correspond-

ing to the entire function erx. Apply Y to the polynomial x — z0 to get rx — z0 with

root z0/r which ranges over all points of the ray except the origin. To get the origin

apply F = {0,1,2,...}, the sequence corresponding to differentiation. This estab-

lishes (i). To prove (ii), let z,, z2 E R, and let 0 < t < 1. By (i) we know that the

points 2tzx, and 2(1 — t)z2 are in R, so the polynomial (x — 2tzx)(x — 2(1 — t)z2)

belongs to C(R). Again we use the sequence {0,1,2,3,...} to conclude that

tzx + (1 — t)z2 lies in R, finishing the proof of the theorem.

We conclude this section with some applications and extensions of the foregoing

results. Our next theorem in this direction provides a simple but useful tool for

constructing examples of sequences which satisfy the Gauss-Lucas property.

Theorem 3.4. Let h(x) = 2£=0 bkxk be a real polynomial with only real negative

zeros. Let h(x) denote the polynomial

n

(3.5) h(x) =   2 bkx(x- 1) ••• (x-k+ 1).
k = Q

Let fiz) = 2™=0 okzk, ak E C, be an arbitrary complex polynomial and let K denote a

convex region containing the origin and all the zeros of fiz). Then all the zeros of the

polynomials (a) A(z) = 2^=0 akh(k)zk and (b) B(z) = 2¡?=0 akh(k)zk also lie in K.

Proof, (a) By a well-known theorem of Laguerre [O, p. 6] the sequence [h(k)}f=0

is a multiplier sequence of the first kind. Since bk > 0, k = 0,1,... ,n, the sequence

{h(k)}^=0 is strictly increasing and consequently by Theorem 2.8 all the zeros of

A(z) also lie in the convex region K.

(b) A computation shows that O(x) = 2k°=Qh(k)xk/k\ = h(x)ex and thus ®(x) is

a function of type I in the Laguerre-Pólya class (cf. [CC2, Corollary 11]). Hence

{h(k)}°¡°=0 is a multiplier sequence of the first kind. By Lemma 2.2 the sequence
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{h(k)}^=0 is strictly increasing and consequently another appeal to Theorem 2.8

proves that all the zeros of B(z) also lie in K.

Remark 3.6. Let 6 = z(d/dz). Then it is easy to verify that the polynomials A(z)

and B(z) of Theorem 3.4 are given by A(z) = h(O)fiz) and B(z) = h(d)fiz). It is

noteworthy that, while with the aid of the differential operator h(6) we can extend

the Gauss-Lucas theorem, the polynomial h(x) defined by (3.5) need not have, in

general, any real zeros (consider, for example, h(x) = 1 + 2x + x2).

Corollary 3.7. Let <b(x) — 2kc'=0ykxk/k\, yk > 0, be a function of type I in the

Laguerre-Pólya class and let fiz) be an arbitrary complex polynomial of degree m.IfK

is a closed convex region containing the origin and the zeros offi z ), then all the zeros of

the polynomial

"'      V

PU)= 2 |t^/(A,(z)
k = 0

also lie in K.

Proof. Let n > m and set hn(x) = g„(x/n), where g„(x) is the Jensen polynomial

associated with $(x). Then by Theorem 3.4(b) and Remark 3.6 the zeros of the

polynomial hn(6)f(z) all lie in the convex region K. In order to obtain an explicit

expression for the polynomial hn(0)f(z), we make use of the following known

operational formula (see, for example, Riordan [Ri]):

(3.8) 8(0 - 1) • • • (0 - k + 1) = 2 i(k, j)oj = xkj-k,
j= i "X

where 6 = x(d/dx) and where s(k, j) denotes a Stirling number of the first kind.

Thus with the aid of (3.8) we obtain that

'»)=J(i-;|''fvlÏTW
k = 0

Finally, letting aj tend to infinity, we conclude that all the zeros of P(z) also lie in

the closed convex region K.

Proposition 3.9. Let h(x) — 2"=0 b¡xj be a real polynomial with only real negative

zeros. If the zeros of the real polynomial fix) — 2™=0 akxk all He in the strip

/:= {z EC||Imz|*£M},       M > 0,

then all the zeros of the polynomial

C(x) = 2jh^(x)f^(x)

also lie in K.

Proof. Let <b(x) = Y[ex], where Y = {Ä(Jfc)}*=o and h(x) = l"J=0bjx(x - 1)

• • • (x — j + 1). Then, as in the proof of Theorem 3.4(b), we conclude that T is a

strictly increasing multiplier sequence of the first kind. For each positive integer N
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consider the polynomial

?»(*) = r ('+#)"/(*)

By Theorem 2.8 the zeros of PN(x) all lie in the strip K. Consequently, all the zeros

of the entire function

(3.10) lim PN(x) = Y[exf(x)]
W-oc

also lie in K. Now in order to simplify the subsequent calculations we note that if

fix) = 2^=0akx(x -1) ■■■(x-k+Y), then f(8)ex =f(x)ex. But then a compu-

tation shows that

m

ï[exf(x)] =f(6)h(0)ex=f(8)<i>(x)=  2 akxk¥k)(x)
k = 0

= 2****2 ())h<J>(x)e'
k = 0 j=0 \ J '

m   hU)(x)   m Ä:'

m       j

= ex2 ^(x)f^(x).

;=0 J '

Thus by (3.10) all the zeros of the polynomial

e-xY[exf(x)]=2jxh^(x)f^(x)

also lie in K. This completes the proof of the proposition.

Proposition 3.9 seems to be new even in the special case when all the zeros of fix)

are real.

Theorem 3.11. Let <b(x) = ?,£=0ykxk/k\, yk > 0, be a function of type I in the

Laguerre-Pólya class. Let

*(x) = ce~axl+fixxm j] (l -f-)<

where a > 0, c, ß and xn are real, 2"=, x~2 < oo and m is a nonnegative integer. Let

^x(x) = <S?(x)f(x), where fix) is a real polynomial all of whose zeros lie in the strip

K= {z EC||Imz|<M},       M ^ 0.

Then all the zeros of the entire function

00    V

2 £***f*>(*)
k = 0

\ex/x"

also lie in K.

The proof of Theorem 3.11 is left to the reader, since it involves only minor

modification of the methods used above.
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4. Properties of multiplier sequences. In §2 we saw that increasing multiplier

sequences are in fact very special sequences. In this section we examine these

sequences more closely and expand the results as far as possible to all multiplier

sequences.

Remark 4.1. In the sequel we will need the following facts concerning entire

functions $(x) of type I in the Laguerre-Pólya class. If $(x) = cxseax(l + x/x„) is

a function of type I in the Laguerre-Pólya class, then the derivative <b'(x) =

cxs~xeax]\(l + x/x'„) belongs to the same class (see, for example, [PS]). Moreover,

it is known that 0 = 0' [HW, see footnote on p. 107].

Definition. For any real sequence {yk}™=0 we define A°yp = yp, kyp = yp+, — yp

and A"yp = l^Q(>;)(-l)"-%+J for n,p = 0,1,2.

Proposition 4.2. Let <fr(x) = 2f=0ykxk/k\, 0 < y0 < y, < ■ ■ ■, be a transcenden-

tal entire function of type I in the Laguerre-Pólya class. Then

A"yp3=0,       n,p = 0,l,2,....

Proof. Since 0 < y0 *£ y, < • • •, it follows from Remark 4.1 and Lemma 2.2 that

for each nonnegative integer p, the type of <b(p)(x) is op > 1. Hence, for each / > -1

the function

ex'&p\x) =  2 ^r-x",
n = 0        "■

where

fc%(0= 2 (¡E)w"~*'

is a function of type I in the Laguerre-Pólya class. Moreover, for each fixed t,

t > -1, the zeros of ex'&p)(x) are all real and nonpositive. Consequently, the

inequalities g*p(t)>0 hold for / > -1 and n, p = 0,1,2,.... In particular, for

t = -1 we obtain

A'y, = £*„(-!) >0,       n,p = 0,1,2,....

Remark 4.3. Let $(x) = 1ykxk/k\, 0 < y0 < y, < • • •, be a transcendental

entire function of type I in the Laguerre-Pólya class. Then by Proposition 4.2 the

function

00 n

%(x)= 2 a"yA,    p = 0,1,2,...,
n = 0

is also a member of this class. We Vemark that by Lemma 2.2 the functions

l™=0anypxp/p\=exd"(ex$(x))/dxn, where n = 0,1,2,..., are also entire func-

tions of type I in the Laguerre-Pólya class. Moreover, it follows from Proposition 4.2

that the sequence {A"yp}p<'=0 is an increasing sequence for each fixed nonnegative

integer ai.

.  ;
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Proposition 4.4. Let Y = {yk} be a multiplier sequence. Then one of the following

holds:

(i) {\yk\} is monotone increasing.

(ii) There exists an m > 0 such that | y0 | , | y, | ,..., | ym | is monotone increasing and

I Ym+1 | , | Ym + 21 ' • • ■ 's monotone decreasing.

Proof. Without loss of generality, we may assume all yk > 0. Assume that

Ym > Ym-t-i- From Turán's inequality, ym+1 > ymym+2, we obtain ym+2 < ym+1/Ym <

ym+1 unless ym+, = ym+2 = 0. Thus once a sequence begins to decrease, it must

continue to do so. The proposition follows.

Lemma 4.5. Assume {yk} is a positive multiplier sequence. For each k, let rk =

Y*/Y*-i- Then the sequence rx,r2,..., is a decreasing sequence.

Proof. By Turán's inequality, yk+i< ll/yk-X - rkyk-x/yk-x = rkyk which im-

plies that rk > rk+x.

We shall call a sequence {yk} convex if the function fik) = yk is a convex

function; i.e. yk+x - y^ > y^ - yk-x for all k.

Theorem 4.6. Let Y = {yk} be a multiplier sequence. Then there exists m > 0 such

that [\ yk + m |} is convex. If {\yk\} is monotone increasing, we may take m — 0.

Proof. Again we may assume that T is a nonnegative sequence. Assume first that

we are in case (ii) of the previous proposition. We may assume that Y is monotone

decreasing since we are only concerned with the tail end of the sequence. If yA = 0

for all large k, we are done; so assume all yk > 0. Let rk = yA/y^_, as in the previous

lemma. Let s = lim rk, which exists since the numbers rk are decreasing and positive.

Since r is decreasing, we have 0 < s < 1. Since (s + l)/2 > s, we can find ai such

that for A: > ai, we have rk < (s + l)/2. Letting 0 < e < (1 — s)2/2, there exists an

m > n such that for k > m, \rk — s\< e. In particular, we have yk — syk_, < eyk_,

and syk — yk+, =£ 0. Adding and rearranging we obtain

yk~ y*+i <s(yk-x -yk) +Y*-i0 - s?/2

< Y*-i[*(l - Yt/Y*-i) + (i - *)(i - Y*/Y*-i)]
= Y*-i "Y*.

since rk = y^/y^-, < (5 + l)/2 implies (1 — s)/2 < 1 — y^/y^-,. Thus the se-

quence {yk+m} is convex.

Now assume that we are in case (i). By Proposition 4.2, we have A2yA, > 0 for

k = 0,1,2,_But this is precisely the statement that T is a convex sequence.

Lemma 4.7. Let $(x) = 2f=0ykxk/k\ be an entire function of type I in the

Laguerre-Pólya class where each yk>0 and $>(x) does not have the form ceax with

o < 1. Then, for sufficiently large n, the associated Jensen polynomial g„(x) has a root

m (-1,0].

Proof. By hypothesis, either O(x) = ceax with o > 1 or $ has a zero r in (-oo, 0 ].

In the former case, g„(x) = c(l + ox)" and the conclusion holds. Assume we are in

the latter case. Since the polynomials gn(x/n) converge uniformly to O on compact
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subsets, for all sufficiently large ai, the polynomial g„(x/n) has a nonpositive

root rn such that | rn — r \< I. But then rn/n is a root of g„ and, if we also have n >

max(2,2 | a- |), then rn/n lies in (-1,0].

We are now ready to prove the main theorem of this section. It classifies

multiplier sequences into one of four categories. For clarity we have stated it only

for nonnegative sequences, assuming that the relatively simple changes needed for

nonpositive and alternating sequences can be easily supplied by the reader.

Theorem 4.8. Let Y = {yk} be a multiplier sequence of nonnegative elements,

®(x) = 'S,k°=0ykxk/k\ and gn(x) = 2(k)ykxk for n = 0,1,2.Then exactly one of

the following conditions holds:

(i) There exists r>0 such that 0 = y0 = y, = • • • = yr_, < yr and yr, yr+,,... is a

strictly increasing convex sequence. In this case each gn has all of its roots in (-1,0]. //

r = 0, the roots lie in (-1,0).

(ii) T is a constant sequence. In this case g„(x) = y0(x + I)".

(iii) There exist integers r, s, t with 0 < r < s < t such that 0 = y0 = y, = • • • =

yr_, < yr, the sequence yr, yr+,.ys_x is strictly increasing, the sequence ys,ys+x,.-.

is strictly decreasing and the sequence y,. yl+,,... is convex. For sufficiently large n, the

polynomials g„ have at least one root in (-oo, -1). IfQ>(x) i= ceax (o < I), then gn also

has at least one root in (-1,0].

(iv) There exist integers r, s, t with 0 < r < s < / such that 0 — y0 = y, = • • ■ =

yr_, < yr, the sequence yr,yr+x,...,ys_x is strictly increasing, the sequence

ys, ys+ j,..., y, is strictly decreasing and yl+x = y,+2= • ■ ■ = 0.

Proof. If Y is constant, it is clear that gn has the form y0(;t + 1)". Assume Y is not

constant. By Proposition 4.4, there exist integers r, s, t with 0 < r *£ s < ; such that

0 = y0 = • • ■ = yr_, < yr, the sequence yr, yr+,.ys_, is monotone increasing and

yv,yy+i,... is either monotone increasing or decreasing. If Y is increasing, then,

being nonconstant, it is strictly increasing from the r th term onward by Lemma 2.1.

In this case the roots of the polynomials g„ lie in the right place by Theorem 2.3 and

Remark 2.5. We are left with the cases in which Y eventually decreases or becomes

zero. The sequence cannot have three successive equal terms by [CC3, Proposition

4.5] (cf. proof of Lemma 2.1(a) above). If two successive terms are equal, say

Y* = Y* + i> tnen Lemma 4.5 implies yk+1<yk+x and the sequence must strictly

decrease beyond this point unless it reaches zero. Thus we are either in case (iii) or

(iv). The fact that the roots in case (iii) are as stated follows from Theorem 2.3 and

Lemma 4.7.

Example 4.9. In the previous section we found that certain theorems are true for

entire functions of the form 11"=, (1 + z/zn) because they are limits of polynomials

with zeros in the convex hull of the z„'s (in fact equal to the z„'s). On the other hand,

all of the entire functions we have been considering are limits of associated Jensen

polynomials gn(x/n). Entire functions of the above form correspond to multiplier

sequences in case (iii) of Theorem 4.8 and for large n the polynomial gn has a root rn

in (-oo,-l). That is nr„ is a root of gn(x/n) which runs to infinity as n -» oo rather

than converging to a zero of the entire function.
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Remark 4.10. Let Y = {y*}"^ be an increasing sequence. In Remark 4.3 we

noted that for each n, the sequence {A"yk}f=Q is again an increasing multiplier

sequence. Since, for ai = 2, this says {y^.} is convex, this can be viewed as a very

strong convexity property. On the other hand, if {yk} is a decreasing positive

sequence, then it eventually becomes convex and a similar argument works for the

differences. In general, one must move out farther and farther in the difference

sequences to find convexity, however. For example, consider {(1 + 2k)2'k}^=0

corresponding to the entire function ex/2(l + x). To obtain multiplier sequences, we

must drop one term each time we take differences: {A"yk}f=n is a multiplier

sequence for each ai = 0,1,2,..., and fails to be a multiplier sequence if we include

A"yn_| as the leading term. (Note also that these alternate between positive and

negative sequences.)

We thus have somewhat weaker conditions on decreasing sequences. On the other

hand, any multiplier sequence can be made increasing as follows: given O(x) =

2 ykxk/k\ with yk > 0, form ex$(x) = 2 g„(l)x"/n\. This entire function has a > 1,

hence corresponds to an increasing sequence by Lemma 2.2. The new coefficients are

&.0) = 25U«)Y*.
It would be extremely valuable to have a complete characterization of functions in

the Laguerre-Pólya class in terms of their coefficients. As a step in this direction, one

can ask about the converse to Proposition 4.2. That is, if Y = {yk} is a sequence

satisfying A"y > 0 for all ai, p > 0, is Y a multiplier sequence? It is not hard to

construct counterexamples to this. In fact, even if we add the conditions that all of

the sequences of differences satisfy Turán's inequality, i.e. (k"yk+x)2 > A"ykh"k+2 for

all n, k > 0, then we still do not necessarily have a multiplier sequence. As an

example, consider the sequence {6 + 5k/2 + 25k2/2}f=Q. Since this corresponds to

the entire function (6 + 15jc + 25x2/2)^JC, which has two nonreal roots, it cannot be

a multiplier sequence. In fact, if one applies the first five terms to (x + l)4, the

resulting polynomial has only real roots; but applying the first six terms to (x + l)5

gives a polynomial with two nonreal roots. On the other hand, A3yk = 0 for all k, so

it is easy to check that all differences are nonnegative and Turán's inequality is

satisfied.
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