Equivariant vector fields on spheres
HTML articles powered by AMS MathViewer
- by Unni Namboodiri
- Trans. Amer. Math. Soc. 278 (1983), 431-460
- DOI: https://doi.org/10.1090/S0002-9947-1983-0701504-9
- PDF | Request permission
Abstract:
We address the following question: If $G$ is a compact Lie group and $S(M)$ is the unit sphere of an $R[G]$-module $M$, then how many orthonormal $G$-invariant vector fields can be found on $S(M)$? We call this number the $G$-field number of $M$. Under reasonable hypotheses on $M$, we reduce this question to determining when the difference of two $G$-vector bundles vanishes in a certain subquotient of the $K{O_G}$-theory of a real projective space. In this general setting, we solve the problem for $2$-groups, for odd-order groups, and for abelian groups. If $M$ also has "enough" orbit types (for example, all of them), then we solve the problem for arbitrary finite groups. We also show that under mild hypotheses on $M$, the $G$-field number depends only on the dimensions of the fixed point sets of $M$.References
- J. F. Adams, Vector fields on spheres, Ann. of Math. (2) 75 (1962), 603–632. MR 139178, DOI 10.2307/1970213
- J. F. Adams, On the groups $J(X)$. II, Topology 3 (1965), 137–171. MR 198468, DOI 10.1016/0040-9383(65)90040-6
- M. F. Atiyah, Thom complexes, Proc. London Math. Soc. (3) 11 (1961), 291–310. MR 131880, DOI 10.1112/plms/s3-11.1.291
- M. F. Atiyah, R. Bott, and A. Shapiro, Clifford modules, Topology 3 (1964), no. suppl, suppl. 1, 3–38. MR 167985, DOI 10.1016/0040-9383(64)90003-5
- M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 0242802
- J. C. Becker, The span of spherical space forms, Amer. J. Math. 94 (1972), 991–1026. MR 312516, DOI 10.2307/2373562
- Tammo tom Dieck, Transformation groups and representation theory, Lecture Notes in Mathematics, vol. 766, Springer, Berlin, 1979. MR 551743
- Andreas Dress, A characterisation of solvable groups, Math. Z. 110 (1969), 213–217. MR 248239, DOI 10.1007/BF01110213 B. Eckmann, Beweis des Satzes von Hurwitz-Radon, Comment. Math. Helv. 15 (1942), 358-366.
- Daniel Gorenstein, Finite groups, Harper & Row, Publishers, New York-London, 1968. MR 0231903
- André Haefliger and Morris W. Hirsch, Immersions in the stable range, Ann. of Math. (2) 75 (1962), 231–241. MR 143224, DOI 10.2307/1970171
- H. Hauschild, Äquivariante Homotopie. I, Arch. Math. (Basel) 29 (1977), no. 2, 158–165 (German). MR 467774, DOI 10.1007/BF01220390
- Henning Hauschild and Stefan Waner, The equivariant Dold theorem mod $k$ and the Adams conjecture, Illinois J. Math. 27 (1983), no. 1, 52–66. MR 684540
- Heinz Hopf, Ein topologischer Beitrag zur reellen Algebra, Comment. Math. Helv. 13 (1941), 219–239 (German). MR 4785, DOI 10.1007/BF01378062 D. Husemoller, Fibre bundles, Springer-Verlag, Berlin and New York, 1966.
- I. M. James, Cross-sections of Stiefel manifolds, Proc. London Math. Soc. (3) 8 (1958), 536–547. MR 100840, DOI 10.1112/plms/s3-8.4.536
- Czes Kosniowski, Equivariant cohomology and stable cohomotopy, Math. Ann. 210 (1974), 83–104. MR 413081, DOI 10.1007/BF01360033
- L. G. Lewis Jr., J. P. May, M. Steinberger, and J. E. McClure, Equivariant stable homotopy theory, Lecture Notes in Mathematics, vol. 1213, Springer-Verlag, Berlin, 1986. With contributions by J. E. McClure. MR 866482, DOI 10.1007/BFb0075778 L. G. Lewis, J. P. May, J. E. McClure and S. Waner, Equivariant cohomology theory (to appear).
- Takao Matumoto, On $G$-$\textrm {CW}$ complexes and a theorem of J. H. C. Whitehead, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 18 (1971), 363–374. MR 345103
- James E. McClure, On the groups $J\textrm {O}_{G}X$. I, Math. Z. 183 (1983), no. 2, 229–253. MR 704106, DOI 10.1007/BF01214823
- Daniel Quillen, The Adams conjecture, Topology 10 (1971), 67–80. MR 279804, DOI 10.1016/0040-9383(71)90018-8
- Graeme Segal, Equivariant $K$-theory, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 129–151. MR 234452
- Jean-Pierre Serre, Linear representations of finite groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott. MR 0450380
- Denis Sjerve, Vector bundles over orbit manifolds, Trans. Amer. Math. Soc. 138 (1969), 97–106. MR 238345, DOI 10.1090/S0002-9947-1969-0238345-8 S. Waner, $G\text {-}CW(V)$ complexes (preprint; to appear as part of [19]).
- Stefan Waner, Equivariant homotopy theory and Milnor’s theorem, Trans. Amer. Math. Soc. 258 (1980), no. 2, 351–368. MR 558178, DOI 10.1090/S0002-9947-1980-0558178-7
- Stefan Waner, Equivariant homotopy theory and Milnor’s theorem, Trans. Amer. Math. Soc. 258 (1980), no. 2, 351–368. MR 558178, DOI 10.1090/S0002-9947-1980-0558178-7
- L. M. Woodward, Vector fields on spheres and a generalization, Quart. J. Math. Oxford Ser. (2) 24 (1973), 357–366. MR 326750, DOI 10.1093/qmath/24.1.357
- M. F. Atiyah and D. O. Tall, Group representations, $\lambda$-rings and the $J$-homomorphism, Topology 8 (1969), 253–297. MR 244387, DOI 10.1016/0040-9383(69)90015-9
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 278 (1983), 431-460
- MSC: Primary 57S99
- DOI: https://doi.org/10.1090/S0002-9947-1983-0701504-9
- MathSciNet review: 701504