Poles of a two-variable $P$-adic complex power
HTML articles powered by AMS MathViewer
- by Leon Strauss
- Trans. Amer. Math. Soc. 278 (1983), 481-493
- DOI: https://doi.org/10.1090/S0002-9947-1983-0701506-2
- PDF | Request permission
Abstract:
For almost all $P$-adic completions of an algebraic number field, if $s \in {\mathbf {C}}$ is a pole of ${f^s} = \int _{}^{} {\int _{}^{} {|f(x,y){|^s}|dx{|_{{K_p}}}|dy{|_{{K_p}}}} }$ , where $f$ is a polynomial whose only singular point is the origin, $f(0,0) = 0$, and $f$ is irreducible in $\overline K [[x,y]]$, then $\operatorname {Re} (s)$ is $- 1$ or one of an explicitly given set of rational numbers, whose cardinality is the number of characteristic exponents of $f = 0$.References
- M. F. Atiyah, Resolution of singularities and division of distributions, Comm. Pure Appl. Math. 23 (1970), 145–150. MR 256156, DOI 10.1002/cpa.3160230202
- I. N. Bernšteĭn and S. I. Gel′fand, Meromorphy of the function $P^{\lambda }$, Funkcional. Anal. i Priložen. 3 (1969), no. 1, 84–85 (Russian). MR 0247457
- J. Igusa, On the first terms of certain asymptotic expansions, Complex analysis and algebraic geometry, Iwanami Shoten, Tokyo, 1977, pp. 357–368. MR 0485881 J. Igusa, Complex powers and asymptotic expansions. II, Crelles J. Math. 278/279 (1975), 308-321.
- Bernard Malgrange, Intégrales asymptotiques et monodromie, Ann. Sci. École Norm. Sup. (4) 7 (1974), 405–430 (1975) (French). MR 372243, DOI 10.24033/asens.1274
- I. R. Shafarevich, Basic algebraic geometry, Die Grundlehren der mathematischen Wissenschaften, Band 213, Springer-Verlag, New York-Heidelberg, 1974. Translated from the Russian by K. A. Hirsch. MR 0366917, DOI 10.1007/978-3-642-96200-4 L. Strauss, On the evaluation of certain integrals through desingularization, Doctoral thesis (unpublished) , Johns Hopkins Univ., 1978. A. N. Varchenko, Newton polyhedra and estimation of oscillating integrals, Functional Anal. Appl. 10 (1976), 175-196.
- Robert J. Walker, Algebraic Curves, Princeton Mathematical Series, vol. 13, Princeton University Press, Princeton, N. J., 1950. MR 0033083 O. Zariski, Algebroid surfaces, Ergeb. Math. Grenzgeb. Springer-Verlag, 1932; Chelsea, New York, 1948.
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 278 (1983), 481-493
- MSC: Primary 14G20; Secondary 12B30, 12B40
- DOI: https://doi.org/10.1090/S0002-9947-1983-0701506-2
- MathSciNet review: 701506