$I^{X}$, the hyperspace of fuzzy sets, a natural nontopological fuzzy topological space
HTML articles powered by AMS MathViewer
- by R. Lowen
- Trans. Amer. Math. Soc. 278 (1983), 547-564
- DOI: https://doi.org/10.1090/S0002-9947-1983-0701510-4
- PDF | Request permission
Abstract:
Let $X$ be a uniform topological space, then on the family ${I^X}$ (resp. $\Phi (X)$) of all nonzero functions (resp. nonzero uppersemicontinuous functions) from $X$ to the unit interval $I$, a fuzzy uniform topology is constructed such that ${2^X}$ (resp. $\mathcal {F}(X)$), the family of all nonvoid (resp. nonvoid closed) subsets of $X$ equipped with the Hausdorff-Bourbaki structure is isomorphically injected in ${I^X}$ (resp. $\Phi (X)$). The main result of this paper is a complete description of convergence in ${I^X}$, by means of a notion of degree of incidence of members of ${I^X}$. Immediate consequences are that first it can be shown that this notion of convergence refines some particular useful notions of convergence of fuzzy sets used in applications, and that second it follows from its construction and properties that for each ordinary uniform topological space $X$ there exists a natural nontopological fuzzy uniform topology on ${I^X}$.References
- Garrett Birkhoff, Lattice theory, 3rd ed., American Mathematical Society Colloquium Publications, Vol. XXV, American Mathematical Society, Providence, R.I., 1967. MR 0227053
- Nicolas Bourbaki, Éléments de mathématique. Fasc. II. Livre III: Topologie générale. Chapitre 1: Structures topologiques. Chapitre 2: Structures uniformes, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1142, Hermann, Paris, 1965 (French). Quatrième édition. MR 0244924
- Didier Dubois and Henri Prade, Operations on fuzzy numbers, Internat. J. Systems Sci. 9 (1978), no. 6, 613–626. MR 491199, DOI 10.1080/00207727808941724
- Didier Dubois and Henri Prade, Fuzzy real algebra: some results, Fuzzy Sets and Systems 2 (1979), no. 4, 327–348. MR 545836, DOI 10.1016/0165-0114(79)90005-8
- R. Engelking, Outline of general topology, North-Holland Publishing Co., Amsterdam; PWN—Polish Scientific Publishers, Warsaw; Interscience Publishers Division John Wiley & Sons, Inc., New York, 1968. Translated from the Polish by K. Sieklucki. MR 0230273
- Michael A. Erceg, Functions, equivalence relations, quotient spaces and subsets in fuzzy set theory, Fuzzy Sets and Systems 3 (1980), no. 1, 75–92. MR 551260, DOI 10.1016/0165-0114(80)90006-8
- R. Féron, Ensembles aléatoires flous dont la fonction d’appartenance prend ses valeurs dans un treillis distributif fermé, Publ. Économétriques 12 (1979), no. 1, 81–118, 129–130 (French, with English summary). MR 535114
- Ulrich Höhle, Probabilistische Topologien, Manuscripta Math. 26 (1978/79), no. 3, 223–245 (German, with English summary). MR 515397, DOI 10.1007/BF01167724
- Ulrich Höhle, Probabilistische Metriken auf der Menge der nicht negativen Verteilungsfunktionen, Aequationes Math. 18 (1978), no. 3, 345–356 (German). MR 522521, DOI 10.1007/BF03031686
- Ulrich Höhle, Probabilistic uniformization of fuzzy topologies, Fuzzy Sets and Systems 1 (1978), no. 4, 311–332. MR 508979, DOI 10.1016/0165-0114(78)90021-0
- Ulrich Höhle, Probabilistic metrization of fuzzy uniformities, Fuzzy Sets and Systems 8 (1982), no. 1, 63–69. MR 665488, DOI 10.1016/0165-0114(82)90030-6
- P. E. Kloeden, Compact supported endographs and fuzzy sets, Fuzzy Sets and Systems 4 (1980), no. 2, 193–201. MR 586283, DOI 10.1016/0165-0114(80)90036-6
- R. Lowen, Convergence in fuzzy topological spaces, General Topology Appl. 10 (1979), no. 2, 147–160. MR 527841, DOI 10.1016/0016-660x(79)90004-7
- R. Lowen, Compact Hausdorff fuzzy topological spaces are topological, Topology Appl. 12 (1981), no. 1, 65–74. MR 600464, DOI 10.1016/0166-8641(81)90030-4
- R. Lowen, Fuzzy neighborhood spaces, Fuzzy Sets and Systems 7 (1982), no. 2, 165–189. MR 644206, DOI 10.1016/0165-0114(82)90048-3
- R. Lowen, Fuzzy uniform spaces, J. Math. Anal. Appl. 82 (1981), no. 2, 370–385. MR 629763, DOI 10.1016/0022-247X(81)90202-X
- Ulrich Höhle, Probabilistic topologies induced by $L$-fuzzy uniformities, Manuscripta Math. 38 (1982), no. 3, 289–323. MR 667918, DOI 10.1007/BF01170928
- Saunders MacLane, Categories for the working mathematician, Graduate Texts in Mathematics, Vol. 5, Springer-Verlag, New York-Berlin, 1971. MR 0354798
- Ernest Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152–182. MR 42109, DOI 10.1090/S0002-9947-1951-0042109-4
- B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), 313–334. MR 115153, DOI 10.2140/pjm.1960.10.313
- R. H. Warren, Neighborhoods, bases and continuity in fuzzy topological spaces, Rocky Mountain J. Math. 8 (1978), no. 3, 459–470. MR 478091, DOI 10.1216/RMJ-1978-8-3-459
- Michael D. Weiss, Fixed points, separation, and induced topologies for fuzzy sets, J. Math. Anal. Appl. 50 (1975), 142–150. MR 370460, DOI 10.1016/0022-247X(75)90044-X
- L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338–353. MR 219427, DOI 10.1016/S0019-9958(65)90241-X
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 278 (1983), 547-564
- MSC: Primary 54A40; Secondary 03E72, 54B20
- DOI: https://doi.org/10.1090/S0002-9947-1983-0701510-4
- MathSciNet review: 701510