Conformally flat manifolds with nilpotent holonomy and the uniformization problem for $3$-manifolds
Author:
William M. Goldman
Journal:
Trans. Amer. Math. Soc. 278 (1983), 573-583
MSC:
Primary 53C20; Secondary 57R99
DOI:
https://doi.org/10.1090/S0002-9947-1983-0701512-8
MathSciNet review:
701512
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: A conformally flat manifold is a manifold with a conformal class of Riemannian metrics containing, for each point $x$, a metric which is flat in a neighborhood of $x$. In this paper we classify closed conformally flat manifolds whose fundamental group (more generally, holonomy group) is nilpotent or polycyclic of rank $3$. Specifically, we show that such conformally flat manifolds are covered by either the sphere, a flat torus, or a Hopf manifoldβin particular, their fundamental groups contain abelian subgroups of finite index. These results are applied to show that certain ${T^2}$-bundles over ${S^1}$ (namely, those whose attaching map has infinite order) do not have conformally flat structures. Apparently these are the first examples of $3$-manifolds known not to admit conformally flat structures.
- D. Burns Jr. and S. Shnider, Spherical hypersurfaces in complex manifolds, Invent. Math. 33 (1976), no. 3, 223β246. MR 419857, DOI https://doi.org/10.1007/BF01404204
- S. S. Chen and L. Greenberg, Hyperbolic spaces, Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 49β87. MR 0377765
- Benny Evans and Louise Moser, Solvable fundamental groups of compact $3$-manifolds, Trans. Amer. Math. Soc. 168 (1972), 189β210. MR 301742, DOI https://doi.org/10.1090/S0002-9947-1972-0301742-6
- David Fried, Closed similarity manifolds, Comment. Math. Helv. 55 (1980), no. 4, 576β582. MR 604714, DOI https://doi.org/10.1007/BF02566707
- David Fried, William Goldman, and Morris W. Hirsch, Affine manifolds with nilpotent holonomy, Comment. Math. Helv. 56 (1981), no. 4, 487β523. MR 656210, DOI https://doi.org/10.1007/BF02566225 W. Goldman (in preparation).
- R. C. Gunning, Lectures on Riemann surfaces, Princeton Mathematical Notes, Princeton University Press, Princeton, N.J., 1966. MR 0207977
- R. C. Gunning, Special coordinate coverings of Riemann surfaces, Math. Ann. 170 (1967), 67β86. MR 207978, DOI https://doi.org/10.1007/BF01362287
- Peter Scott, There are no fake Seifert fibre spaces with infinite $\pi _{1}$, Ann. of Math. (2) 117 (1983), no. 1, 35β70. MR 683801, DOI https://doi.org/10.2307/2006970
- Shoshichi Kobayashi, Transformation groups in differential geometry, Springer-Verlag, New York-Heidelberg, 1972. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 70. MR 0355886
- N. H. Kuiper, On conformally-flat spaces in the large, Ann. of Math. (2) 50 (1949), 916β924. MR 31310, DOI https://doi.org/10.2307/1969587
- N. H. Kuiper, On compact conformally Euclidean spaces of dimension $>2$, Ann. of Math. (2) 52 (1950), 478β490. MR 37575, DOI https://doi.org/10.2307/1969480
- R. S. Kulkarni, On the principle of uniformization, J. Differential Geometry 13 (1978), no. 1, 109β138. MR 520605
- M. S. Raghunathan, Discrete subgroups of Lie groups, Springer-Verlag, New York-Heidelberg, 1972. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68. MR 0507234 M. Spivak, A comprehensive introduction to differential geometry, Vol. 3, Publish or Perish, Cambridge, Mass., 1978, p. 310; Vol. 4, p. 13. W. Thurston, The geometry and topology of $3$-manifolds, mimeographed notes, Princeton Univ., 1979.
- William P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357β381. MR 648524, DOI https://doi.org/10.1090/S0273-0979-1982-15003-0
- Joseph A. Wolf, Spaces of constant curvature, 3rd ed., Publish or Perish, Inc., Boston, Mass., 1974. MR 0343214 W. Goldman, Surgery on Fuchsian groups (in preparation).
Retrieve articles in Transactions of the American Mathematical Society with MSC: 53C20, 57R99
Retrieve articles in all journals with MSC: 53C20, 57R99
Additional Information
Article copyright:
© Copyright 1983
American Mathematical Society