Diophantine approximation properties of certain infinite sets
HTML articles powered by AMS MathViewer
- by Wolfgang M. Schmidt
- Trans. Amer. Math. Soc. 278 (1983), 635-645
- DOI: https://doi.org/10.1090/S0002-9947-1983-0701515-3
- PDF | Request permission
Abstract:
We exhibit various infinite sets of reals whose finite subsets do not have good simultaneous rational approximations. In particular there is an infinite set such that each finite subset is "badly approximable" in the sense that Dirichlet’s theorem is best possible up to a multiplicative constant.References
- J. W. S. Cassels, On a result of Marshall Hall, Mathematika 3 (1956), 109–110. MR 84526, DOI 10.1112/S0025579300001765
- J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Tracts in Mathematics and Mathematical Physics, No. 45, Cambridge University Press, New York, 1957. MR 0087708
- H. Davenport, A note on Diophantine approximation, Studies in mathematical analysis and related topics, Stanford Univ. Press, Stanford, Calif., 1962, pp. 77–81. MR 0146145 A. Khintchine, Über eine Klasse linearer Diophantischer Approximationen, Rend. Circ. Mat. Palermo 50 (1926), 170-195.
- A. Khintchine, Zur metrischen Theorie der diophantischen Approximationen, Math. Z. 24 (1926), no. 1, 706–714 (German). MR 1544787, DOI 10.1007/BF01216806
- Jan Mycielski, Algebraic independence and measure, Fund. Math. 61 (1967), 165–169. MR 224762, DOI 10.4064/fm-61-2-165-169
- Wolfgang M. Schmidt, On badly approximable numbers and certain games, Trans. Amer. Math. Soc. 123 (1966), 178–199. MR 195595, DOI 10.1090/S0002-9947-1966-0195595-4
- Wolfgang M. Schmidt, Diophantine approximation, Lecture Notes in Mathematics, vol. 785, Springer, Berlin, 1980. MR 568710
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 278 (1983), 635-645
- MSC: Primary 10F10; Secondary 10K15
- DOI: https://doi.org/10.1090/S0002-9947-1983-0701515-3
- MathSciNet review: 701515