EMBEDDING L^1 IN L^1/H^1

BY

J. BOURGAIN

ABSTRACT. It is proved that L^1 is isomorphic to a subspace of L^1/H^1. More precisely, there exists a diffuse σ-algebra \mathcal{E} on the circle such that the corresponding expectation $E: H^\infty \to L^\infty(C)$ is onto. The method consists in studying certain martingales on the product \mathbb{P}^N.

1. Introduction. Let us start by fixing some terminology. As usual, \mathbb{T} will denote the circle equipped with its Haar measure m, H^1_0 is the subspace of those $f \in L^1(\mathbb{T})$ for which $\hat{f}(n) = 0$ for $n \leq 0$ and $q: L^1 \to L^1/H^1_0$ is the quotient map.

We are interested in the question whether or not there exists a linear embedding of the Banach space L^1 in the space L^1/H^1_0. We briefly indicate some motivation for this problem. First, it was (and still remains) an open question if the three-space-property holds for L^1-embedding, i.e. suppose X a Banach space, Y a subspace of X. Is it true that whenever L^1 embeds in X, it also has to embed in either Y or X/Y?

The problem is also unsolved in the particular case $X = L^1$ and Y isomorphic to a dual space. It is not hard to show that an embedding of L^1 in X/Y is then equivalent to the existence of a subspace S of X, S isomorphic to L^1 so that the quotient map $X \to X/Y$ is an isomorphism when restricted to S.

In the special situation $X = L^1(\mathbb{T})$ and $Y = H^1_0$, the answer was unknown for some time. There was hope that this may provide a counterexample in view of the following result, due to W. B. Johnson (see [9]).

PROPOSITION 1. No complemented subspace of L^1/H^1_0 is isomorphic to L^1.

This is a consequence of the fact that any operator $T: L^1/H^1 \to L^1$ maps weakly compact sets onto norm compact sets. Let us sketch the argument.

Consider the identity map $I: L^\infty/H^\infty \to L^1/H^1$. Then $(TI)^*: L^\infty \to H^\infty \to H^1$ is integral and therefore nuclear (since H^1 satisfies the Radon-Nikodym property). Consequently, also TI is nuclear. Given now a weakly null sequence $(x_n)_{n=1,2,\ldots}$ in L^1/H^1, it follows from the lifting property (see [9] for instance) that $x_n = q(f_n)$ where $(f_n; n = 1,2,\ldots)$ is a relatively weakly compact set in $L^1(\mathbb{T})$. Therefore, for each $\varepsilon > 0$, a truncation argument provides a bounded sequence (g_n) in L^∞ such that $\|f_n - g_n\|_1 < \varepsilon$ for each n. Thus

$$\|Tx_n - TIg_n\| \leq \|T\| \|x_n - Ig_n\| < \varepsilon \|T\|.$$
Because TI is nuclear, the set $\{TI(\tilde{g}_n); \ n = 1, 2, \ldots\}$ is compact for each $\varepsilon > 0$. So we conclude that $\{Tx_n\}$ is compact, as announced.

Using Proposition 1, the following is proved in [2].

Proposition 2. There is no almost isometric embedding of the complex L^1 space in L^1/H^1.

Thus $d(S, L^1) > \gamma > 1$ for each subspace S of L^1/H^0_0, where d is the Banach-Mazur distance (see [8, 9] for definitions). This observation allows us to define a natural distortion of L^1, by taking

$$\|f\|_1 = \|f\|_1 + \|q(f)\|_1, \quad f \in L^1(\mathbb{I}).$$

Say that an operator $T : X \to Y$ is a semiembedding provided T is one-one and maps the closed unit ball of X on a norm-closed subset of Y. It can be shown that a semiembedding $T : L^1 \to L^1$ has to fix an L^1-copy (i.e. is an isomorphism when restricted to a subspace S of L^1, S isomorphic to L^1). On the other hand, (see [3]):

Proposition 3. The restriction of the quotient map $q : L^1 \to L^1/H^0$ to the subspace L^1_R of real functions in $L^1(\mathbb{I})$ is a semiembedding.

No example is known of a semiembedding of L^1 in a Banach space X not containing L^1.

Our purpose is to prove the existence of a natural embedding of L^1 in L^1/H^0. There exists a diffuse σ-algebra \mathcal{O} on \mathbb{I} so that the restriction of q to the complex $L^1(\mathcal{O})$-space is an isomorphism. More precisely:

Theorem. There exists an increasing sequence (n_k) of positive integers, such that if \mathcal{O} is the σ-algebra on \mathbb{I} generated by the functions $\sigma_k(\theta) = \text{sign } \cos n_k \theta$, then the restriction of q to $L^1(\mathcal{O})$ is an isomorphism. Consequently, for this σ-algebra \mathcal{O}, the expectation operator $E : H^\infty \to L^\infty(\mathcal{O})$ is onto.

The argument presented here is rather delicate. In order to give the reader an idea how it is organised, we briefly outline the proof. We have to introduce the σ-algebra \mathcal{O} such that the inequality

$$(\ast) \quad \|h - E_{\mathcal{O}}[h]\|_1 \geq \delta\|h\|_1$$

holds for each $h \in H^1_0$. But choosing the sequence (n_k) sufficiently lacunary, it is enough to verify (\ast) for functions h with spectrum contained in a set of the form

$$E = \{\Sigma v_k n_k; \ |v_k| \leq a_k \text{ for each } k\}$$

where (a_k) is a sequence of positive integers and $(n_k), (a_k)$ satisfy the transference property. Thus the n_k-frequencies can be replaced by independent variables. The space $H^1_0 \cap L^1_E$ identifies with a subspace of the space $\mathcal{K} \subset L^1(\mathbb{I}^N)$ of those functions $h = \Sigma h_k$ on \mathbb{I}^N such that each increment $h_k = h_k(x_1, \ldots, x_k)$ is an H^1_0-function in x_k. The required inequality now becomes

$$(\ast\ast) \quad \|h - E_{\mathcal{O}}[h]\|_1 \geq \delta\|h\|_1$$

for $h \in \mathcal{K}$, where \mathcal{O} is a natural diadic product σ-algebra on \mathbb{I}^N (generated by the functions $\sigma_k(x) = \text{sign } \cos x_k$).
This reduction of the problem is worked out in §4. Its purpose is to approach the problem with martingale techniques. The martingale prerequisites are given in §2. To obtain (**) we first prove \(L^1 \)-estimations for certain square functions related to \(h \) (see Lemma 4). These are derived using a “step-by-step” method (explained at the beginning of §5) and an examination of what happens at each increment. More precisely, we have to consider at this point functions of the form \(a + h - b \sigma \), where \(a, b \) are scalars, \(h \in H_0^1 \) and \(\sigma = \text{sign } \cos \).

Minorations of the \(L^{-1} \)-norm of such expressions are given in Propositions 8 and 9 below. It is only at this place that some complex function theory will be involved.

2. Martingale preliminaries. Let \((\mathcal{F}_k)_{k=0,1,2,\ldots} \) be an increasing sequence of \(\sigma \)-algebras on a probability space \((\Omega, \mathcal{F}, P) \) assuming \(\mathcal{F} = \bigvee_{k=1}^{\infty} \mathcal{F}_k \). Denote by \(E_k \) the expectation with respect to \(\mathcal{F}_k \). For \(f \in L^1(\mathcal{F}) \) let

\[
\begin{align*}
 f* &= \sup_k |E_k[f]| \quad \text{and} \quad S(f) = \left[|E_0[f]|^2 + \sum_{k=1}^{\infty} |E_k[f] - E_{k-1}[f]|^2 \right]^{1/2},
\end{align*}
\]

We will use the notation \(C \) to indicate a numerical constant. Let us recall the following result, due to D. Davis (see [7]).

Proposition 4. \(C^{-1} \| S(f) \|_1 \leq \| f* \|_1 \leq C \| S(f) \|_1 \).

The next inequality is probably known, but we include its proof here for the sake of completeness.

Proposition 5. Let \((v_k) \) be an adapted sequence of functions; thus \(v_k \) is \(\mathcal{F}_k \)-measurable for each \(k \). Then

\[
\left\| \sum |E_{k-1}[v_k]|^2 \right\|^{1/2}_1 \leq C \left\| \sum |v_k|^2 \right\|^{1/2}_1.
\]

Proof. It is no restriction to assume the \(\mathcal{F}_k \) finite algebras. Moreover, since one may always tensor the \(v_k \) against a Rademacher sequence, we can assume \(E_{k-1}[v_k] = 0 \) and thus \((v_k) \) is an adapted martingale difference sequence. Since, then

\[
\left\| \sum |v_k|^2 \right\|^{1/2}_1 = \left\| \sum v_k \right\|_{H^1(\mathcal{F}_k)},
\]

it follows from the atomic decomposition property for \(H^1 \)-functions (see for instance [7, Chapter I]) and convexity, that we may take for \(\sum v_k \) a function of the form (for some positive integer \(j \))

\[
a = \frac{1}{|A|} (\varphi - E_{j-1}[\varphi])
\]

where \(A \) is an \(\mathcal{F}_j \)-atom, \(\text{supp } \varphi \subset A \) and \(\| \varphi \|_{\infty} \leq 1 \). In this case

\[
v_k = E_k[a] - E_{k-1}[a] = 0 \quad \text{for } k < j,
\]

\[
= \frac{1}{|A|} (E_k[\varphi] - E_{k-1}[\varphi]) \quad \text{for } k \geq j.
\]
Also, $E_k[\varphi]$ is supported by A for $k \geq j$ and hence v_k for $k > j$. Thus the left side in Proposition 5 is dominated by

$$\|v_j\|_1 + \left\| \left(\sum_{k > j} E_{k-1} \left[|v_k|^2 \right] \right)^{1/2} \right\|_1 \leq 2 + \int_A \left(\sum_{k > j} E_{k-1} \left[|v_k|^2 \right] \right)^{1/2} \quad \text{(by Cauchy-Schwarz)}$$

$$\leq 2 + |A|^{1/2} \left(\int \sum_{k > j} |v_k|^2 \right)^{1/2}$$

$$\leq 2 + |A|^{1/2} \|a\|_2 \leq 3,$$

proving the result.

Proposition 6. For $f \in H^1(\mathbb{T}_N)$, one has an inequality

$$\left(\sum \|E_k - E_{k-1}\|_2 \right)^{1/2} \leq C\|f\|_1^{1/2}\|f\|_H^{1/2}.$$

To prove this, we will first deal with the special case of the Rademacher projection on the Cantor group (in fact, only this will be used later on).

Proposition 7. If $D = \{1, -1\}^N$ is the Cantor group and $f \in H^1(D)$, then

$$\left(\sum \hat{f}(k)^2 \right)^{1/2} \leq C\|f\|_1^{1/2}\|f\|_H^{1/2}$$

where $\hat{f}(k) = \hat{f}(\epsilon)\epsilon_k$.

Proof. We will use the theorem of [6] on the BMO-distance of a BMO-function to L^∞ (in the diadic setting). The result asserts, in particular, that for $\varphi \in \text{BMO}(D)$,

$$\text{dist}_{\text{BMO}}(\varphi, L^\infty) = 0 \land \epsilon > 0 \land \exists \alpha + \beta \quad \text{such that}$$

$$\|\alpha\|_{\text{BMO}} \leq C_1 \epsilon \quad \text{and} \quad \|\beta\|_\infty \leq C_2 \max(\epsilon, \lambda_0(\epsilon))$$

where $\lambda_0 = \lambda(\epsilon)$ has to satisfy

$$\sup_I \frac{1}{|I|} \left| \{ x \in I ; |\varphi(x) - \varphi_I| > \lambda \} \right| \leq e^{-\lambda/\epsilon}$$

whenever $\lambda > \lambda(\epsilon) \quad (\varphi_I = |I|^{-1}\int_I \varphi)$.

Now take $\varphi = \sum a_k \epsilon_k$ with $\sum |a_k|^2 = 1$. It follows from the distribution property of Rademacher that for each diadic interval I,

$$\left| \{ \alpha \in I ; |\varphi(x) - \varphi_I| > \lambda \} \right| \leq C e^{-c\lambda^2}|I|,$$

for numerical constants $c > 0, C < \infty$. Hence $\text{dist}_{\text{BMO}}(\varphi, L^\infty) = 0$ and $\lambda(\epsilon) \sim 1/\epsilon$.

Decomposing $\varphi = \alpha + \beta$ as above, we get

$$|\langle f, \varphi \rangle| \leq |\langle f, \alpha \rangle| + |\langle f, \beta \rangle| \leq C_1\|f\|_H + C_2 \frac{1}{\epsilon} \|f\|_1.$$

Taking supremum over φ and choosing $\epsilon = \|f\|_1^{1/2}\|f\|_{H^1}^{1/2}$, the inequality follows.
PROOF OF PROPOSITION 6. Assume \(f \) real and estimate
\[
\left(\sum_{k=1}^{K} \|(E_k - E_{k-1})[f]\|_1^2 \right)^{1/2}.
\]
Define for each \(k \),
\[
\sigma_k = \text{sign } \Delta f_k \quad \text{and} \quad b_k = \frac{1}{2}(\sigma_k - E_{k-1}[\sigma_k]).
\]
Then
\[
\|f\|_1 \geq \int \int |f| \prod_{k=1}^{K} (1 + \epsilon_k b_k) \, d\epsilon \, d\omega \geq \frac{1}{2} \int \sum_{k=1}^{K} \epsilon_k \Phi_k(\epsilon) \, d\epsilon
\]
where
\[
\Phi_k(\epsilon) = \int \prod_{j=1}^{k-1} (1 + \epsilon_j b_j) |\Delta f_k| \, d\omega.
\]
Application of Proposition 7 to the function \(\sum \epsilon_k \Phi_k(\epsilon) \) then gives
\[
\left(\sum_{k=1}^{K} \|\Delta f_k\|_1^2 \right)^{1/2} \leq C \|f\|_1^{-1/2} \left[\int \left(\sum |\phi_k(\epsilon)|^2 \right)^{1/2} \, d\epsilon \right]^{1/2}
\]
\[
\leq C \|f\|_1^{1/2} \left[\int \int S(f) \prod (1 + \epsilon_j b_j) \, d\omega \, d\epsilon \right]^{1/2}
\]
\[
= C \|f\|_1^{1/2} \|f\|_H^1
\]
as announced.

REMARK. The author is grateful to P. W. Jones for outlining a more explicit procedure to obtain the decomposition used in the proof of Proposition 7.

3. Some inequalities involving \(H_0^1 \)-functions. The purpose of this section is to prove the following results.

PROPOSITION 8. For \(a \in \mathbb{C} \) and \(h \in H_0^1 \), one has
\[
\|a + h\|_1 \geq \left(|a| + \delta|h| \right)^{1/2}
\]
where \(\delta > 0 \) is a fixed constant.

PROPOSITION 9. There exists \(\delta > 0 \) such that for \(a \in \mathbb{C} \), \(b \in \mathbb{C} \) and \(h \in H_0^1 \),
\[
\|a + h - b\sigma\|_1 \geq \left(|a| + \delta \left[\text{Re}(\langle h, \sigma \rangle (\langle h, \sigma \rangle - b)) \right] \right)^{1/2},
\]
\[
\|a + h - \left(\langle h, \sigma \rangle \sigma \right)\|_1 \geq \left(|a| + \delta^2 |h| - \langle h, \sigma \rangle \sigma \right)^{1/2},
\]
where \(\sigma = \text{sign cos} \) and \(h_\epsilon(\theta) = \sum_{n=1}^{\infty} \tilde{h}(n) \cos n\theta \).
It is clear that it suffices to prove Propositions 8 and 9, with $a = 1$.

Proof of Proposition 8. Factoring $1 + h$ gives $1 + h = (1 + g_1)(1 + g_2)$ where $g_1, g_2 \in H_0^2$ and

$$
\|1 + h\|_1 = \left(1 + \|g_1\|^2_2\right)^{1/2} \left(1 + \|g_2\|^2_2\right)^{1/2}.
$$

Since $|h| \leq |g_1| + |g_2| + |g_1||g_2|$ the result follows from the majorations

$$
\left\|\left(1 + |g_1|^2\right)^{1/2}\right\|_1 \leq \left\|\left(1 + |g_1|^2\right)^{1/2}\right\|_2 = \left(1 + \|g_2\|^2_2\right)^{1/2} \leq 1 + h, \quad (i = 1, 2)
$$

and

$$
\left\|\left(1 + |g_1|^2|g_2|^2\right)^{1/2}\right\|_1 \leq 1 + \|g_1g_2\|_1 \leq 1 + \|g_1\|_2\|g_2\|_2 \leq 1 + h.
$$

Also to obtain Proposition 9, we will use the L^2-theory. Our argument here is, however, more complicated. This is the only point where explicit constructions of H^{∞}-functions appear.

Lemma 1. Given a measurable subset A of \mathbb{P}, there exist H^{∞}-functions φ and ψ satisfying the following conditions:

(i) $|\varphi| + |\psi| \leq 1,$
(ii) $\text{Re } \psi$ is an even function on $\mathbb{P},$
(iii) $|\varphi - 1/8| < 1/100$ on the set $A,$
(iv) $\|\varphi\|_1 \leq C|A|,$
(v) $\|\text{Re } \psi - 1\|_1 \leq C|A|.$

Proof. Fix some (large) $M > 0$ and define the following H^{∞}-functions:

$$
\tau(z) = -M \int_A \frac{e^{i\theta} + z}{e^{i\theta} - z} m(d\theta), \quad \varphi = \frac{1}{8} (1 - e^\tau)^2,
$$

$$
\psi(z) = \exp \left\{ \int_{\mathbb{P}} \log(1 - \alpha(\theta)) \frac{e^{i\theta} + z}{e^{i\theta} - z} m(d\theta) \right\}
$$

where $\alpha(\theta) = |\varphi(e^{i\theta})| \vee |\varphi(e^{-i\theta})|.$

Notice that this makes sense, because e^τ has boundary value $e^{-M(\mathcal{H} + i\mathcal{H}(\mathcal{H}))}$ ($\mathcal{H} = \text{Hilbert-transform}$) and therefore $\|\alpha\|_\infty \leq \frac{1}{2}.$

(i) is obvious. On \mathbb{P}, we have $\text{Re } \psi = (1 - \alpha) \cos \mathcal{H}(\log(1 - \alpha))$ and thus an even function. Since $|\varphi - 1/8| \leq 3/8 |e^\tau|$ and thus $|\varphi - 1/8| < e^{-M}$ on A (iii) holds for M large enough. Because on \mathbb{P}

$$
8|\varphi| \leq \mathcal{H} + M^2|\mathcal{H}(\mathcal{H})|^2,
$$

(iv) follows. Finally,

$$
|1 - \text{Re } \psi| \leq |\alpha| + \frac{1}{2} |\mathcal{H}(\log(1 - \alpha))|^2, \quad \|1 - \text{Re } \psi\|_1 \leq 4\|\varphi\|_1
$$

and hence (v).

We refer the reader to [4, Proposition 1.6] for the following Marcinkiewicz type decomposition.
Lemma 2. There is a constant $C < \infty$ such that for given $h \in H^1_0$ and $\lambda > 0$, there exists $h_\lambda \in H^\infty_0$ satisfying:

(i) $|h_\lambda| \leq C|h|$,
(ii) $\|h_\lambda\|_\infty \leq C\lambda$,
(iii) $\|h - h_\lambda\|_1 \leq C_{\|h_\lambda\|_1} |h|$.

Let h be as in Proposition 9. For $\lambda > 0$, define $A_\lambda = |h| > \lambda$. Application of Lemma 1 to the set A_λ provides H^∞-functions $\varphi_\lambda, \psi_\lambda$. We are now ready to prove

Lemma 3. $\|1 + h - b\sigma\|_1 \geq 1 + c\int_{A_\lambda} |h| + c\lambda^{-2}\|\text{Im}(h_\lambda - b\sigma)\|_2^2$ if $\lambda > K$ and $|b| < \lambda/K$ ($c > 0$ and $K < \infty$ being numerical constants).

Proof. First, since $1 - b\sigma$ is even and $\text{Im} \psi_\lambda$ odd, we find

$$\|1 + h - b\sigma\|_1 \geq \|1 + h - b\sigma\|_1 + \int (1 - b\sigma)\psi_\lambda$$

$$\geq \frac{1}{9} \int_{A_\lambda} |h| - (1 + |b|) + \int (1 - b\sigma)\text{Re} \psi_\lambda$$

$$\geq \frac{1}{9} \int_{A_\lambda} |h| - \frac{1}{9} (1 + |b|)|A_\lambda| + 1 - (1 + |b|)\|1 - \text{Re} \psi_\lambda\|_1$$

$$\geq \frac{1}{9} \int_{A_\lambda} |h| - C(1 + |b|)|A_\lambda| + 1$$

for some constant C. Thus, choosing K large enough, we get

$$(\ast) \quad \|1 + h - b\sigma\|_1 \geq 1 + \frac{1}{10} \int_{A_\lambda} |h|.$$

Fix some small constant $\delta > 0$. Since we always have

$$\|1 + af\|_1 \leq \|1 + f\|_1 \quad \text{for } 0 \leq a \leq 1 \text{ and } f \text{ of mean } 0,$$

it follows that

$$\|1 + h - b\sigma\|_1 \geq \|1 + \delta\lambda^{-1}(h - b\sigma)\|_1 \geq \|1 + \delta\lambda^{-1}(h_\lambda - b\sigma)\|_1 - \delta\lambda^{-1}\|h - h_\lambda\|_1.$$

Because $\delta\lambda^{-1} |h_\lambda - b\sigma| \ll 1$ the inequality

$$(1 + t)^{1/2} \geq 1 + t/3 \quad \text{for } 0 \leq t \leq 1$$

yields

$$\|1 + \delta\lambda^{-1}(h_\lambda - b\sigma)\| \geq \left[1 + \delta\lambda^{-1}\text{Re}(h_\lambda - b\sigma)\right] \left[1 + \frac{1}{2\lambda^2}\lambda^{-2}(\text{Im}(h_\lambda - b\sigma))^2\right].$$

Therefore, also

$$(\ast\ast) \quad \|1 + h - b\sigma\|_1 \geq 1 + \frac{1}{20}\delta^{-2}\int_{A_\lambda} |h|.$$

The required minoration clearly follows combining (\ast) and $(\ast\ast)$.

Proof of Proposition 9. First

$$\|1 + h - b\sigma\|_1 \geq d(b\sigma, H^1) \geq \left\{ \kappa b \right\} \left\{ \int_{-\pi}^{\pi} \sigma(\theta)e^{i\theta}d\theta \right\} = \frac{2}{\pi} |b|.$$
and hence, also,
\[\| 1 + h - b \sigma \|_1 \geq \frac{1}{2} \| 1 + h \|_1 \geq \frac{1}{2} \| h \|_1. \]

Notice that the right member of (i), (ii) is bounded by \(1 + 2 \delta \| h \|_1 \). Since now \(\| 1 + h - b \sigma \|_1 \geq \frac{1}{2} \| h \|_1 + \frac{1}{2} | b | \), it follows that (i) (resp. (ii)) are satisfied for \(| b | \geq 6 \) (resp. \(| \langle h, \sigma \rangle | \geq 6 \)). Hence, we may assume \(| b | \leq M \) in (i), \(| \langle h, \sigma \rangle | \leq M \) in (ii) where \(M \) is some numerical constant.

Fix a constant \(\lambda > KM \) and put \(k = h(x) \) for simplicity. Using again Lemma 2(iii), the right member of (i) can be majorized by
\[
1 + 2 \delta^2 \left[| \text{Re} \langle h, \sigma \rangle |^2 + | \text{Im} \langle h, \sigma \rangle - b |^2 \right]^{1/2}
\leq \left[1 + 2 \delta^2 \left(| \text{Re} \langle k, \sigma \rangle |^2 + | \text{Im} \langle k, \sigma \rangle - b |^2 \right) \right]^{1/2} + 2 \delta C \int_{A_{\lambda}} |h|.
\]

Taking Lemma 3 into account, we see that it suffices to check the inequality
\[
| \text{Re} \langle k, \sigma \rangle |^2 + | \text{Im} \langle k, \sigma \rangle - b |^2 \leq \| \text{Im} (k - b \sigma) \|_2^2
\]
which is straightforward:
\[
\| \text{Im} (k - b \sigma) \|_2^2 = \frac{1}{2} \sum_{n > 0} | \text{Im} \hat{k} (n) - 2 \text{Im} b \hat{\sigma} (n) |^2 + \frac{1}{2} \sum_{n > 0} | \text{Re} \hat{k} (n) |^2
\]
while
\[
| \text{Re} \langle k, \sigma \rangle | \leq \sum_{n > 0} | \text{Re} \hat{k} (n) | \hat{\sigma} (n) \leq \frac{1}{\sqrt{2}} \left(\sum_{n > 0} | \text{Re} \hat{k} (n) |^2 \right)^{1/2},
\]
\[
| \text{Im} \langle k, \sigma \rangle - b | \leq \sum_{n > 0} | \text{Im} \hat{k} (n) - 2 \text{Im} b \hat{\sigma} (n) | \hat{\sigma} (n) \leq \frac{1}{\sqrt{2}} \left(\sum_{n > 0} | \text{Im} \hat{k} (n) - 2 \text{Im} b \hat{\sigma} (n) |^2 \right)^{1/2}.
\]

For the right member of (ii), a similar reasoning reduces the question to the verification of
\[
\int | \text{Re} \langle k, \sigma \rangle - \langle k, \sigma \rangle \sigma |^2 \leq \| \text{Im} (k - b \sigma) \|_2^2,
\]
which the reader will easily do.

4. Reduction of the problem. In this section, we will reduce the problem of proving that certain elements of \(L^1(\Pi) \) normed by the quotient norm \(L^1/H^1 \) to the verification of an inequality for certain functions in \(L^1(\Pi^N) \), where \(\Pi^N = \Pi \times \Pi \times \cdots \) is the product group. Denote by \(E_k (k = 1, 2, \ldots) \) the expectation with respect to the \(k \) first variables \((x_1, x_2, \ldots, x_k) \), where \(x = (x_1, x_2, \ldots) \) is the product variable.

We consider the subspace \(\mathcal{K} \) of \(L^1(\Pi^N) \) of those functions \(h \) such that for each \(k \) the difference \(E_k [h] - E_{k-1} [h] \) is an \(H^0_0 \)-function with respect to \(x_k \). Thus \(h \) is of the form
\[
h = \sum h_k \quad \text{where} \quad h_k = \sum_{n > 0} \hat{h}_k (n) e^{inx_k}
\]
and the \(\hat{h}_k (n) \) are functions of \(x_1, \ldots, x_{k-1} \).
Again let \(\sigma = \sign \cos \) and \(\sigma_k(x) = \sigma(x_k) \) for each \(k \). Let \(\mathcal{F} \) be the \(\sigma \)-algebra on \(\prod^N \) generated by the \(\sigma_k \). In the next section, we show the following

Proposition 10. There is a constant \(c > 0 \) s.t. \(\| h - E_{\sigma}[h] \|_1 \geq c \| h \|_1 \) for all \(h \in \mathcal{F} \).

This fact obviously implies

Corollary 11. \(\inf_{h \in \mathcal{F}} \| f - h \|_1 \geq c' \| f \|_1 \) for all \(f \in L^1(\mathcal{F}) \).

For \(a, n \) positive integers, \(\mathcal{F}_a \) will be the Fejér kernel

\[
F_a(\theta) = \sum_{|j| < a} \frac{a + 1 - |j|}{a + 1} e^{ij\theta}
\]

and \(F_{a,n}(\theta) = F_a(n\theta) \).

We consider sequences of positive integers \((n_k)\), \((a_k)\) satisfying the following conditions: (\(\mathcal{G} \) denotes again the \(\sigma \)-algebra on \(\prod \) generated by the functions \(\sigma(n_k\theta) \).)

(i) The transference property, i.e. let \(E = (\Sigma' v_k n_k; (v_k) \in F) \) where \(F \) is the subset \(\{ (v_k), |v_k| \leq a_k \} \) of the dual group of \(\prod^N \). Then the operator

\[
T: L^1_E(\Pi) \to L^1_F(\Pi^n), \quad T(f)(x) = \sum_{(v_k) \in F} \hat{f}(\sum v_k n_k) e^{i(\sum v_k x_k)}
\]

satisfies

\[
\frac{1}{2} \| f \|_1 \leq \| T(f) \|_1 \leq 2 \| f \|_1.
\]

Moreover, \(T(f) \in \mathcal{F} \) for \(f \in L^1_E \cap H_0^1 \).

(ii) Defining for each \(k \),

\[
\xi_k = \sigma \ast F_{a_k}, \quad K = \prod_k F_{a_k,n_k},
\]

\[
R(\theta, \psi) = \prod_k \left[1 + \xi_k(n_k\theta)\sigma(n_k\psi) \right],
\]

one has

(\(\alpha \)) \(\sum \| \xi_k - \sigma \|_1 \leq \epsilon \),

(\(\beta \)) \(\| K \|_1 = 1 \).

For \(f \in L^1(\mathcal{G}) \),

(\(\gamma \)) \(\| f - f \ast K \|_1 \leq \epsilon \| f \|_1 \),

(\(\delta \)) \(\| f - R(f) \|_1 < \epsilon \| f \|_1 \) where \(R(f)(\theta) = \int f(\psi)R(\theta, \psi)m(d\psi) \) (where \(\epsilon > 0 \) is a small constant).

The reader will easily convince himself that the realisation of these conditions is straightforward. Details on the transference property can be found in [1].

Let us now show that the sequence \((n_k)\) satisfies the Theorem. Thus, fix \(f \in L^1(\mathcal{G}) \) and \(h \in H_0^1 \). We get, by (ii),

\[
\| f - h \|_1 \geq \| f \ast K - h \ast K \|_1 \geq \| R(f) - h \ast K \|_1 \geq 2\epsilon \| f \|_1.
\]

Notice that \(R(f) \in L^1_E \). By (i),

\[
\| R(f) - h \ast K \|_1 \geq \frac{1}{2} \| T(R(f)) - h_1 \|_1
\]

where \(h_1 = T(h \ast K) \in \mathcal{F} \).
Now
\[T(R(f))(x) = \int f(\psi) \prod \left[1 + \xi_k(x_k) \sigma(n_k \psi) \right] m(d\psi). \]

By (ii)(a), we see that for any \((\pm 1)\)-sequence \((\tau_k)\)
\[\| \otimes (1 + \tau_k \xi_k) - \prod (1 + \tau_k \sigma_k) \|_1 < \varepsilon \]
implying that
\[\| T(R(f)) - f_1 \| < 2\varepsilon\|f\| \quad \text{where} \quad f_1 = E[T(R(f))]. \]

It follows then from Corollary 11 that
\[\| f_1 - h \|_1 \geq \frac{1}{2} \| f_1 - h \|_1 - 3\varepsilon\|f\|_1 \geq \frac{c}{2} \| f_1 \|_1 - 3\varepsilon\|f\|_1 \]
\[\geq \frac{c}{2} \| T(R(f)) \|_1 - 4\varepsilon\|f\|_1 \geq \frac{c}{4} \| f_1 \|_1 - 5\varepsilon\|f\|_1 \geq c'\|f\|_1 \]
taking \(\varepsilon > 0\) small enough.

5. Proof of the Theorem. It remains to prove Proposition 10. So fix \(h = \sum h_k \in \mathcal{H}\) where
\[h_k = \sum_{n>0} \hat{h}_k(n)(x_1, \ldots, x_{k-1}) e^{inx_k}. \]

We also define
\[[h_k]_e = \sum \hat{h}_k(n) \cos n x_k, \]
\[[h_k]_o = \sum \hat{h}_k(n) \sin n x_k, \]
\[\langle h_k, \sigma_k \rangle = \sum \hat{h}_k(n) \sigma(n) \]
(which is thus a function of \(x_1, \ldots, x_{k-1}\)). If \(f = E[h]\), then \(f = \Sigma b_k \cdot \sigma_k\), where
\[b_k = b_k(x_1, \ldots, x_{k-1}) = E[h_k, \sigma_k]. \]

Using E. Stein’s theorem on \(H^1\)-multipliers (see [11]), it is easily seen that
\(\| h \|_1 \sim \| S(h) \|_1 \) (\(S = \) square function with respect to the natural decomposition).

We give a direct proof of this fact, based on Proposition 8.

Fix \(1 > \varepsilon > 0\) and a positive sequence \((s_k)_{k=1, 2, \ldots} \in L^\infty(\mathbb{N})\) satifying
\(\| (\Sigma s_k^2) \|_\infty \leq \varepsilon\). Fixing a positive integer \(K\), we get, using Proposition 8,
\[\| E_K[h] \|_1 = \| E_{K-1}[h] + h_k \|_1 \]
\[\geq \left\| \left(\| E_{K-1}[h] \|^2 + \delta^2 |h_k|^2 \right)^{1/2} \right\|_1 \]
\[\geq \| E_{K-1}[h](1 - s_K^2)^{1/2} \|_1 + \delta \| h_k s_k \|_1 \]
\[\geq \| E_{K-1}[h] \|_1 + \delta \| h_k s_k \|_1 - \| E_{K-1}[h] s_k^2 \|_1. \]

Iterating,
\[\| h \|_1 \geq \delta \sum \| h_k s_k \|_1 - \sum \| E_{K-1}[h] s_k^2 \|_1 \]
\[\geq \delta \sum \| h_k s_k \|_1 - \varepsilon^2 \max_k \| E_k[h] \|_1. \]
Taking supremum over the sequences \((s_k)\), it follows that
\[
\|h\|_1 \geq \delta \varepsilon \|S(h)\|_1 - \varepsilon^2 \max_k |E_k[h]|_1
\]
and choosing
\[
\varepsilon^2 = \frac{\|h\|_1}{\max |E_k[h]|_1},
\]
we get
\[
\|S(h)\|_1 \leq \delta^{-1} \|h\|_1^{1/2} \max |E_k[h]|_1^{1/2}.
\]
Hence, by Proposition 4, \(\|S(h)\|_1 \leq \delta^{-2} \|h\|_1\) as required.

Before continuing, notice that since \(\mathcal{F}\)-expectation is a contraction, \(\|S(f)\|_1 \leq \|S(h)\|_1\). Since for each \(k\), \(\cdots \langle h_k, \sigma_k \rangle \leq E_{k-1}[\|h_k\|]\), application of Proposition 5 yields
\[
\left\| \left(\sum |\langle h_k, \sigma_k \rangle|^2 \right)^{1/2} \right\|_1 \leq C \|h\|_1.
\]
If we now apply the previous procedure using Proposition 9, the following inequalities are derived.

Lemma 4.

\begin{align*}
(1) & \quad \left\| \left\{ \sum_k \left| \frac{\text{Re} \langle h_k, \sigma_k \rangle (\langle h_k, \sigma_k \rangle - b_k)}{|\langle h_k, \sigma_k \rangle| + |b_k|} \right|^{2/2} \right\}^{1/2} \right\|_1 \leq C \|h - f\|_1^{1/2} \|h\|_1^{1/2}, \\
(2) & \quad \left\| \left\{ \sum_k |[h_k]_k - \langle h_k, \sigma_k \rangle \sigma_k|^2 \right\}^{1/2} \right\|_1 \leq C \|h - \sum \langle h_k, \sigma_k \rangle \sigma_k\|_1^{1/2} \|h\|_1^{1/2}.
\end{align*}

Proof. Let us show how (I) follows from Proposition 9(i). The argument for (II) is analogous. Fix \(0 < \varepsilon < 1\) and a sequence \((s_k)_{k=1,2,\ldots}\) of positive \(L^\infty\)-functions on \(\mathbb{N}\) satisfying \(\|(\sum s_k^2)^{1/2}\|_\infty \leq \varepsilon\). Fix an integer \(k\) and apply Proposition 9(i) in the variable \(x_k\). We get
\[
\|E_k[h - f]\|_1 = \|E_{k-1}[h - f] + h_k - b_k \sigma_k\|_1
\]
\[
\geq \left\| \left\{ \left\| E_{k-1}[h - f] \right\|^2 + \delta^2 \text{Re} \langle h_k, \sigma_k \rangle (\langle h_k, \sigma_k \rangle - b_k) \right\} \left\| E_{k-1}[h - f] \right\|_1^{1/2} \right\|_1^{1/2}
\]
\[
\geq \|E_{k-1}[h - f]\|_1 + \delta \left\| \text{Re} \langle h_k, \sigma_k \rangle (\langle h_k, \sigma_k \rangle - b_k) s_k \right\|_1
\]
\[
- \|E_{k-1}[h - f] s_k\|_1.
\]
Iterating and using the same considerations as in the beginning of this section it follows that the left member of (I) is dominated by
\[
\delta^{-1} \varepsilon^{-1} \|h - f\|_1 + \text{const.} \varepsilon \|S(h - f)\|_1,
\]
and hence, choosing ϵ appropriately, by the right member of (I). We first make use of (I) to show

Lemma 5. \(|\Sigma \langle h_k, \sigma_k \rangle - b_k^2\|/2\|_1 \leq C\|h - f\|_4\|h\|_8^{3/4}\).**

Proof. Write

\[
2 \Re \frac{\langle h_k, \sigma_k \rangle (\langle h_k, \sigma_k \rangle - h_k)}{|\langle h_k, \sigma_k \rangle| + |b_k|} = \xi_k - |b_k|
\]

where

\[
\xi_k = \frac{|\langle h_k, \sigma_k \rangle - b_k|^2}{|\langle h_k, \sigma_k \rangle| + |b_k|} + |\langle h_k, \sigma_k \rangle|.
\]

By the triangle inequality, the left side of (I) dominates

\[
\left\| \left(\sum |\xi_k|^2 \right)^{1/2} - \left(\sum |b_k|^2 \right)^{1/2} \right\|_1.
\]

Also, since $b_k = E[\langle h_k, \sigma_k \rangle],

\[
\left\| \left(\sum |b_k|^2 \right)^{1/2} \right\|_1 \leq \left\| \left(\sum |\langle h_k, \sigma_k \rangle|^2 \right)^{1/2} \right\|_1.
\]

Write

\[
\left[\sum (\xi_k^2 - |\langle h_k, \sigma_k \rangle|^2) \right]^{1/2}
\]

\[
= \left[\left(\sum \xi_k^2 \right)^{1/2} + \left(\sum |\langle h_k, \sigma_k \rangle|^2 \right)^{1/2} \right]^{1/2} \left[\left(\sum \xi_k^2 \right)^{1/2} - \left(\sum |\langle h_k, \sigma_k \rangle|^2 \right)^{1/2} \right]^{1/2}
\]

and apply Cauchy-Schwarz. From (I) and previous observations

\[
\left\| \left[\sum (\xi_k^2 - |\langle h_k, \sigma_k \rangle|^2) \right]^{1/2} \right\|_1 \leq C\|h\|_4\|h - f\|_4\|h\|_8^{3/4} = C\|h - f\|_4\|h\|_8^{3/4}.
\]

Since for each k,

\[
\xi_k^2 - |\langle h_k, \sigma_k \rangle|^2 = (\xi_k + |\langle h_k, \sigma_k \rangle|) \frac{|\langle h_k, \sigma_k \rangle - b_k|^2}{|\langle h_k, \sigma_k \rangle| + |b_k|} \geq C|\langle h_k, \sigma_k \rangle - b_k|^2.
\]

Lemma 5 is proved.

The left side of Lemma 5 dominates $\|f - \Sigma \langle h_k, \sigma_k \rangle \sigma_k\|_1$.

Lemma 6. $\|\Sigma h_k \|_1$ and $\|\Sigma [h_k]_e - b_k \sigma_k^2 \|_1 \leq C\|h - f\|_4\|h\|_8^{3/8}$.**

Proof. Since $\Sigma [h_k]_0 = h - \Sigma [h_k]_e$, the first inequality is a consequence of the second. Write

\[
\left\| \left[\sum [h_k]_e - b_k \sigma_k^2 \right]^{1/2} \right\|_1 \leq \left\| \left[\sum [h_k]_e - \langle h_k, \sigma_k \rangle \sigma_k^2 \right]^{1/2} \right\|_1
\]

\[
+ \left\| \left[\sum \langle h_k, \sigma_k \rangle - b_k \right]^{1/2} \right\|_1.
\]
which by Lemmas 4(II) and 5 is estimated by

\[C\|h - \sum \langle h_k, \sigma_k \rangle \sigma_k\|_1^{1/2}\|\sigma\|_1^{1/2} + C\|h - f\|_1^{1/4}\|h\|_1^{3/4} \leq C\|h - f\|_1^{1/8}\|h\|_1^{7/8}. \]

Define for \(u \in L^1(\mathbb{R}^n) \),

\[(u)_e(x) = \int_D u(e_1x_1, e_2x_2, \ldots) \, de \]

(\(=\) the natural projection on the even part in \(x_1, x_2, \ldots \)).

Lemma 7. \(\|\sum_k |(h_k(1))_e|^2\|_1^{1/2} \leq C\|h - f\|_1^{1/16}\|h\|_1^{5/16}. \)

Proof. At this point, we will make use of Proposition 7. Fix \(x \in \mathbb{R}^n \) and remark that the sequence of functions in \(e \in D \),

\[[h_k]_0(e_1x_1, e_2x_2, \ldots), \]

is a martingale difference sequence.

Moreover, the \(k \)th Rademacher coefficient is clearly given by

\[\sum_{n>0} (h_k(n))_e(x) \sin nx_k \]

and Proposition 7 yields

\[\left[\sum_k \left(\sum_{n>0} (h_k(n))_e(x) \sin nx_k \right)^2 \right]^{1/2} \]

\[\leq C \left[\int \left[\sum_k [h_k]_0(e \cdot x) \right]^2 \, de \right]^{1/2} \left[\int \left[\sum_k [h_k]_0(e \cdot x) \right] \, de \right]^{1/2}. \]

Integration in \(x \), application of Cauchy-Schwarz and Lemma 6, gives

\[(+) \left\| \left[\sum_k \left(\sum_{n>0} (h_k(n))_e \sin nx_k \right)^2 \right]^{1/2} \right\| \leq C\|h - f\|_1^{1/16}\|h\|_1^{7/16}\left[\sum_k [h_k]_0^2 \right]^{1/2}. \]

Also

\[\left\| \left[\sum_k [h_k]_0^2 \right]^{1/2} \right\| \leq C\|h\|_1. \]

On the other hand, we can multiply the \(k \)th increment in the left member of (\(+ \)) by \(\sin x_k \) and then take \(E_{k-1} \)-expectation. Proposition 5 shows that

\[\left\| \left[\sum_k [h_k]_e^2 \right]^{1/2} \right\| \leq C\|h - f\|_1^{1/16}\|h\|_1^{5/16}, \]

proving Lemma 7.

Now, rewriting

\[\left[\sum_k [h_k]_e - b_k \sigma_k \right]^2 = \left[\sum_k \sum_{n>0} h_k(n) \cos nx_k - b_k \sigma_k \right]^2 \]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
multiplication of the kth increment by $\cos x_k$ and taking E_{k-1}-expectation yields (by Proposition 5 and Lemma 6)

$$\left\| \sum_k \left| \frac{1}{2} \hat{h}_k(1) - \frac{2}{\pi} b_k \right|^{1/2} \right\|_1 \leq C \| h - f \|_1^{1/8} \| h \|_8^{7/8}.$$

Since $b_k = (b_k)_e$, a convexity argument allows us to replace, in a previous inequality, $\hat{h}_k(1)$ by $(\hat{h}_k(1))_e$. Combining with Lemma 7, we conclude

$$C^{-1} \| f \|_1 \leq \left\| \left(\sum \left| b_k \right|^2 \right)^{1/2} \right\|_1 \leq C \| h - f \|_1^{1/16} \| h \|_1^{15/16}, \quad \| f \|_1 \leq C \| h - f \|_1,$$

and thus Proposition 10.

REFERENCES

DEPARTMENT OF MATHEMATICS, VRIJE UNIVERSITEIT BRUSSEL, PLEINLAAN 2-F7, 1050 BRUSSELS, BELGIUM