Subcontinua with degenerate tranches in hereditarily decomposable continua
HTML articles powered by AMS MathViewer
- by Lex G. Oversteegen and E. D. Tymchatyn
- Trans. Amer. Math. Soc. 278 (1983), 717-724
- DOI: https://doi.org/10.1090/S0002-9947-1983-0701520-7
- PDF | Request permission
Abstract:
A hereditarily decomposable, irreducible, metric continuum $M$ admits a mapping $f$ onto $[0,1]$ such that each ${f^{ - 1}}(t)$ is a nowhere dense subcontinuum. The sets ${f^{ - 1}}(t)$ are the tranches of $M$ and ${f^{ - 1}}(t)$ is a tranche of cohesion if $t \in \{ 0,1\}$ or ${f^{ - 1}}(t) = {\text {C1}}({f^{ - 1}}([0,t))) \cap {\text {C1}} ({f^{ - 1}}((t,1]))$. The following answer a question of Mahavier and of E. S. Thomas, Jr. Theorem. Every hereditarily decomposable continuum contains a subcontinuum with a degenerate tranche. Corollary. If in an irreducible hereditarily decomposable continuum each tranche is nondegenerate then some tranche is not a tranche of cohesion. The theorem answers a question of Nadler concerning arcwise accessibility in hyperspaces.References
- David P. Bellamy, Composants of Hausdorff indecomposable continua; a mapping approach, Pacific J. Math. 47 (1973), 303–309. MR 331345
- Eldon Dyer, Irreducibility of the sum of the elements of a continuous collection of continua, Duke Math. J. 20 (1953), 589–592. MR 58198
- J. Grispolakis and E. D. Tymchatyn, Irreducible continua with degenerate end-tranches and arcwise accessibility in hyperspaces, Fund. Math. 110 (1980), no. 2, 117–130. MR 600585, DOI 10.4064/fm-110-2-117-130
- George W. Henderson, Proof that every compact decomposable continuum which is topologically equivalent to each of its nondegenerate subcontinua is an arc, Ann. of Math. (2) 72 (1960), 421–428. MR 119183, DOI 10.2307/1970224
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR 0006493 B. Knaster, Un continu irreductible à décomposition continue en tranches, Fund. Math. 25 (1935), 568-577.
- J. Krasinkiewicz, On two theorems of Dyer, Colloq. Math. 50 (1986), no. 2, 201–208. MR 857853, DOI 10.4064/cm-50-2-201-208
- K. Kuratovskiĭ, Topologiya. Tom 2, Izdat. “Mir”, Moscow, 1969 (Russian). Translated from the English by M. Ja. Antonovskiĭ. MR 0259836
- William S. Mahavier, Upper semi-continuous decompositions of irreducible continua, Fund. Math. 60 (1967), 53–57. MR 208579, DOI 10.4064/fm-60-1-53-57 S. Mazurkiewicz, Sur l’existence des continues indecomposables, Fund. Math. 26 (1935), 327-328. S. B. Nadler, Hyperspaces of sets, Dekker, New York, 1968.
- Sam B. Nadler Jr., Arcwise accessibility in hyperspaces, Dissertationes Math. (Rozprawy Mat.) 138 (1976), 33. MR 425923
- J. W. Rogers Jr., On mapping indecomposable continua onto certain chainable indecomposable continua, Proc. Amer. Math. Soc. 25 (1970), 449–456. MR 256361, DOI 10.1090/S0002-9939-1970-0256361-0
- E. S. Thomas Jr., Monotone decompositions of irreducible continua, Rozprawy Mat. 50 (1966), 74. MR 196721
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 278 (1983), 717-724
- MSC: Primary 54F20; Secondary 54F50
- DOI: https://doi.org/10.1090/S0002-9947-1983-0701520-7
- MathSciNet review: 701520