Fully nonlinear, uniformly elliptic equations under natural structure conditions
HTML articles powered by AMS MathViewer
- by Neil S. Trudinger
- Trans. Amer. Math. Soc. 278 (1983), 751-769
- DOI: https://doi.org/10.1090/S0002-9947-1983-0701522-0
- PDF | Request permission
Abstract:
We derive first and second derivative estimates for classical solutions of fully nonlinear, uniformly elliptic equations which are subject to natural structure conditions analogous to those proposed and treated by Ladyzhenskaya and Ural’tseva for quasilinear equations. As an application we extend recent work of Evans and Lions on the Bellman equation for families of linear operators to families of quasilinear operators.References
- Lawrence C. Evans, Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math. 35 (1982), no. 3, 333–363. MR 649348, DOI 10.1002/cpa.3160350303
- Lawrence C. Evans, Classical solutions of the Hamilton-Jacobi-Bellman equation for uniformly elliptic operators, Trans. Amer. Math. Soc. 275 (1983), no. 1, 245–255. MR 678347, DOI 10.1090/S0002-9947-1983-0678347-8
- Lawrence C. Evans and Avner Friedman, Optimal stochastic switching and the Dirichlet problem for the Bellman equation, Trans. Amer. Math. Soc. 253 (1979), 365–389. MR 536953, DOI 10.1090/S0002-9947-1979-0536953-4
- Lawrence C. Evans and Pierre-Louis Lions, Résolution des équations de Hamilton-Jacobi-Bellman pour des opérateurs uniformément elliptiques, C. R. Acad. Sci. Paris Sér. A-B 290 (1980), no. 22, A1049–A1052 (French, with English summary). MR 582494
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag, Berlin-New York, 1977. MR 0473443
- A. V. Ivanov, A priori estimates for the solutions of nonlinear elliptic second order equations, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 59 (1976), 31–59, 255 (Russian, with English summary). Boundary value problems of mathematical physics and related questions in the theory of functions, 9. MR 0466953
- N. V. Krylov and M. V. Safonov, A property of the solutions of parabolic equations with measurable coefficients, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 1, 161–175, 239 (Russian). MR 563790
- O. A. Ladyženskaja and N. N. Ural′ceva, Quasilinear elliptic equations and variational problems in several independent variables, Uspehi Mat. Nauk 16 (1961), no. 1 (97), 19–90 (Russian). MR 0149075
- Olga A. Ladyzhenskaya and Nina N. Ural’tseva, Linear and quasilinear elliptic equations, Academic Press, New York-London, 1968. Translated from the Russian by Scripta Technica, Inc; Translation editor: Leon Ehrenpreis. MR 0244627 —, Hölder estimates for solutions of second order quasilinear elliptic equations in general form, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 96 (1980), 161-168.
- P.-L. Lions, Résolution analytique des problèmes de Bellman-Dirichlet, Acta Math. 146 (1981), no. 3-4, 151–166 (French). MR 611381, DOI 10.1007/BF02392461
- T. S. Motzkin and W. Wasow, On the approximation of linear elliptic differential equations by difference equations with positive coefficients, J. Math. Physics 31 (1953), 253–259. MR 0052895
- Neil S. Trudinger, Local estimates for subsolutions and supersolutions of general second order elliptic quasilinear equations, Invent. Math. 61 (1980), no. 1, 67–79. MR 587334, DOI 10.1007/BF01389895 —, Elliptic equations in non-divergence form, Proc. Miniconf. Partial Differential Equations, Canberra, 1981, pp. 1-16.
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 278 (1983), 751-769
- MSC: Primary 35J60; Secondary 49C20
- DOI: https://doi.org/10.1090/S0002-9947-1983-0701522-0
- MathSciNet review: 701522