Weighted iterates and variants of the Hardy-Littlewood maximal operator
HTML articles powered by AMS MathViewer
- by M. A. Leckband and C. J. Neugebauer
- Trans. Amer. Math. Soc. 279 (1983), 51-61
- DOI: https://doi.org/10.1090/S0002-9947-1983-0704601-7
- PDF | Request permission
Abstract:
In a recent paper, M. A. Leckband and C. J. Neugebauer obtained a rearrangement inequality for a generalized maximal operator with respect to two measures. For an application they studied norm bounds for the iterated Hardy-Littlewood maximal operator with respect to two measures. In this paper this theory is further developed and other applications of the rearrangement inequality are obtained.References
- Lennart Carleson, Interpolations by bounded analytic functions and the corona problem, Ann. of Math. (2) 76 (1962), 547β559. MR 141789, DOI 10.2307/1970375
- Richard A. Hunt, On $L(p,\,q)$ spaces, Enseign. Math. (2) 12 (1966), 249β276. MR 223874
- Huann Ming Chung, Richard A. Hunt, and Douglas S. Kurtz, The Hardy-Littlewood maximal function on $L(p,\,q)$ spaces with weights, Indiana Univ. Math. J. 31 (1982), no.Β 1, 109β120. MR 642621, DOI 10.1512/iumj.1982.31.31012
- W. B. Jurkat and J. L. Troutman, Maximal inequalities related to generalized a.e. continuity, Trans. Amer. Math. Soc. 252 (1979), 49β64. MR 534110, DOI 10.1090/S0002-9947-1979-0534110-9 R. Kerman, Restricted weak type inequalities with weights.
- M. A. Leckband and C. J. Neugebauer, A general maximal operator and the $A_{p}$-condition, Trans. Amer. Math. Soc. 275 (1983), no.Β 2, 821β831. MR 682735, DOI 10.1090/S0002-9947-1983-0682735-3
- Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207β226. MR 293384, DOI 10.1090/S0002-9947-1972-0293384-6
- Benjamin Muckenhoupt and Richard L. Wheeden, Two weight function norm inequalities for the Hardy-Littlewood maximal function and the Hilbert transform, Studia Math. 55 (1976), no.Β 3, 279β294. MR 417671, DOI 10.4064/sm-55-3-279-294
- E. M. Stein, Editorβs note: the differentiability of functions in $\textbf {R}^{n}$, Ann. of Math. (2) 113 (1981), no.Β 2, 383β385. MR 607898
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 279 (1983), 51-61
- MSC: Primary 42B25
- DOI: https://doi.org/10.1090/S0002-9947-1983-0704601-7
- MathSciNet review: 704601