ON THE DISTRIBUTION OF THE PRINCIPAL SERIES
IN $L^2(\Gamma \backslash G)$

BY
ROBERTO J. MIATELLO AND JORGE A. VARGAS

ABSTRACT. Let G be a semisimple Lie group of split rank one with finite center. If $\Gamma \subset G$ is a discrete cocompact subgroup, then $L^2(\Gamma \backslash G) = \sum_{\omega \in E(G)} \eta_\Gamma(\omega) \cdot \omega$. For fixed $\sigma \in \widehat{M}$, let $P(\sigma)$ denote the classes of irreducible unitary principal series $\pi_{\sigma,\nu}(\nu \in \mathcal{X})$. Let, for $s > 0$, $\psi_\sigma(s) = \sum_{\omega \in P(\sigma)} \eta_\Gamma(\omega) \cdot e^{i\lambda_\omega}$, where λ_ω is the eigenvalue of Ω (the Casimir element of G) on the class ω. In this paper, we determine the singular part of the asymptotic expansion of $\psi_\sigma(s)$ as $s \to 0^+$ if Γ is torsion free, and the first term of the expansion for arbitrary Γ. As a consequence, if $N_\sigma(r) = \sum_{\omega \in P(\sigma)} \eta_\Gamma(\omega)$ and G is without connected compact normal subgroups, then

$$N_\sigma(r) \sim C_\sigma \cdot |Z(G) \cap \Gamma| \cdot \text{vol}(\Gamma \backslash G) \cdot \dim(\sigma) \cdot r^c \quad (c = \frac{1}{2} \dim G/K),$$

as $r \to +\infty$. In the course of the proof, we determine the image and kernel of the restriction homomorphism $^r* : R(K) \to R(M)$ between representation rings.

Introduction. Let G be a connected, real semisimple Lie group with Lie algebra \mathfrak{g}. Let $G = K.A.N.$ (respectively $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}$) be an Iwasawa decomposition of G (respectively \mathfrak{g}) and let M be the centralizer of A in K. We assume throughout this paper that G has finite center and split rank one. We do not assume that G is linear. Let $\hat{\mathcal{E}}(G)$ denote the set of equivalence classes of irreducible unitary representations of G. If $\sigma \in \hat{\mathcal{E}}(M)$, $\nu \in \mathcal{X}$, let $\pi_{\sigma,\nu}$ be the principal series representation of G, parametrized as in [DW, §3]. In this parametrization $\pi_{\sigma,\nu}$ is unitary if $\nu \in i\mathcal{X}$. If $\omega \in \hat{\mathcal{E}}(G)$ let λ_ω and θ_ω denote, respectively, the eigenvalue of the Casimir element of G on the class ω and the distributional character of ω. We will abbreviate by writing $\lambda_{\sigma,\nu} = \lambda_{\sigma,\nu}$. If $\omega \in \hat{\mathcal{E}}_2(G)$, the discrete series of G, let $d(\omega)$ denote the formal degree of ω.

For fixed $\sigma \in \hat{\mathcal{E}}(M)$ set

$$P(\sigma) = \{\pi_{\sigma,\nu} : \nu \in \mathcal{X} \text{ and } \pi_{\sigma,\nu} \text{ is irreducible}\}.$$
Let Γ be a discrete, cocompact subgroup of G. The right regular representation π_{Γ} of G in $\mathfrak{S}(\mathfrak{g}^\ast)$ decomposes $\pi_{\Gamma} = \sum_{\omega \in \mathfrak{S}(G)} n_{\Gamma}(\omega) \cdot \omega$ and $n_{\Gamma}(\omega) < \infty$, for any $\omega \in \mathfrak{S}(G)$. If $\tau \in \mathcal{E}(K)$,

$$\phi_{\tau}(s) = \sum_{\omega \in \mathfrak{S}(G)} n_{\Gamma}(\omega) \cdot [\tau : \omega] \cdot e^{s\lambda_{\omega}}$$

defines a C^∞ function on \mathbb{R}^+, the series converging uniformly on compacta with all derivatives $[W]$. Hence, if $\sigma \in \mathfrak{S}(M)$ is fixed, the series $\psi_{\sigma}(s) = \sum_{\omega \in \mathcal{P}(\sigma)} n_{\Gamma}(\omega) \cdot e^{s\lambda_{\omega}}$ defines a C^∞ function for $s > 0$. The purpose of this paper is to study the asymptotic behavior of $\psi_{\sigma}(s)$, as $s \to 0^+$. By using the technique in [MI] we determine the singular part of the asymptotic expansion of $\psi_{\sigma}(s)$, as $s \to 0^+$, when Γ is torsion free.

Theorem 1. Let $\Gamma \subset G$ be a discrete, cocompact, torsion-free subgroup. Then

$$\psi_{\sigma}(s) = \psi_{\sigma}(0) + \sum_{i=0}^{c+d-1} b_{2(i-d)+1}(\sigma) \cdot \Gamma(i + 1 - d) \cdot (4s)^{-i-1+d}$$

where $\psi_{\sigma}(s)$ extends to $\tilde{\psi}_{\sigma}(s)$, a C^∞ function on \mathbb{R}, such that

(i) if $\text{rank } G = \text{rank } K$

$$\tilde{\psi}_{\sigma}(0) = \psi_{\sigma}(0) + \sum_{\omega \in \mathfrak{S}(\sigma)} s(\omega) \cdot n_{\Gamma}(\omega)$$

(ii) if $\text{rank } G > \text{rank } K$

$$\tilde{\psi}_{\sigma}(0) = \sum_{\omega \in \mathcal{C}(\sigma)} s(\omega) \cdot n_{\Gamma}(\omega).$$

Here $c = \frac{1}{2}\dim(G/K)$, $d = c - [c]$, $a \in \mathbb{R}^+$, and λ_{σ} is the eigenvalue of the Casimir element of M on the class σ. Furthermore, $b_{2(i-d)+1}(\sigma)$ denotes, for $i = 1, \ldots, c + d - 1$, the ith coefficient of the polynomial part of the Plancherel density associated to σ, B_{2j} is the jth Bernoulli number, and $\varepsilon = 1$ or -1 depending on σ. Finally, if $\omega \in R(\sigma) \cup C(\sigma) \cup \mathcal{E}_2(G)$, then

$$s(\omega) = [\eta : \omega] = \dim \text{Hom}_K(\eta, \omega) \in \mathbb{Z}$$

where $\eta = \eta_{\sigma}$ is a virtual representation of K (in particular, $s(\omega)$ depends on σ but not on Γ).

Let $R(M)$ and $R(K)$ denote the representation rings of M and K. We make use of the following.

Proposition 1. Let $i^*: R(K) \to R(M)$ be the restriction homomorphism. Then $\text{Im}(i^*) = R(M)^W$, where $W = W(\mathbb{S}, \mathbb{A})$. If $\text{rank } G = \text{rank } K$, then $R(M)^W = R(M)$ and i^* is surjective.
Let $\Gamma \subseteq G$ be an arbitrary discrete cocompact subgroup. We assume for simplicity, that G has no nontrivial compact, connected, normal subgroups (see the remark below). Theorem 1.1 in [W], together with Proposition 1, imply

Corollary 1. If $Z(\Gamma) = Z(G) \cap \Gamma$ and $\sigma \in \hat{\mathcal{E}}(M)$ satisfies $\sigma|_{Z(\Gamma)} = 1$, then

$$\lim_{s \to 0^+} s^c \cdot \psi_\sigma(s) = \frac{\dim(\sigma) \cdot |Z(\Gamma)| \cdot \text{vol}(\Gamma \backslash G)}{(4\pi)^c},$$

(if $\sigma|_{Z(\Gamma)} \neq 1$ then $n_\Gamma(\pi_{\sigma, r}) = 0$, for all v, hence $\psi_\sigma(s) = 0$).

Let $N_\sigma(r) = \sum_{\omega \in \rho(\sigma), \omega \neq r} n_\Gamma(\omega) (r > 0)$. Corollary 1 and the Tauberian theorem for the Laplace transform imply

$$\lim_{r \to \infty} r^{-c} \cdot N_\sigma(r) = \frac{\dim(\sigma) \cdot |Z(\Gamma)| \cdot \text{vol}(\Gamma \backslash G)}{\Gamma(c + 1) \cdot (4\pi)^c}.$$

Remark. When G has compact normal subgroups, (1) still holds with $\dim V_{\nabla(\Gamma \cap N)} \cdot |\Gamma \cap N|$ substituting $\dim(\sigma) \cdot |Z(G) \cap \Gamma|$, where $N = \cap_{\chi \in E} x Kx^{-1}$. This follows from [W, 1.1], with a correction factor as in [BH, §6], and Proposition 1. Indeed, if $\sigma = i^\#(\eta)$, $\eta = \sum m_j \tau_j \in R(K)$, one can show that $\sum m_j \dim V_{\tau_j} \cdot \text{vol}(N \cap \Gamma) = \dim V_{\nabla(\Gamma \cap N)}$.

The asymptotic formula (1) for the spherical principal series (i.e. $\sigma = 1$) in $L^2(\Gamma \backslash G)$ was proposed by Gelfand ([G, p. 77], see also [GGP, pp. 82, 94]). It was proved by Gangolli for complex G, by Eaton for G of split rank one, and by Duistermaat-Kolk-Varadarajan, for general G ([Ga, DKV], see also [GW]). With the aid of Proposition 1, Theorem 1.1 in [W] implies the Gelfand type formula (1) for any $\sigma \in \hat{\mathcal{E}}(M)$, when G is as above.

The outline of the paper is as follows. In §1, we prove Theorem 1.1 (assuming Proposition 1). The proof of Proposition 1 is given in §2. Finally, we show (Lemma 2.6) that if rank $G = \text{rank } K$, then $J = \ker i^* \neq 0$ and determine J explicitly. We recall that if Γ is torsion-free, each $\eta \in \ker i^*$ yields a finite alternating sum formula in the $n_\Gamma(\omega)$'s [M3, Theorem 1.2].

1. We first normalize Haar measures conveniently. If λ denotes the long positive restricted root of $(\mathfrak{g}, \mathfrak{h})$ let $H \in \mathfrak{h}$ be so that $\lambda(H) = 2$. Let $a = B(H, H)$, B the Killing form of \mathfrak{g}. Let $d\bar{x}, d\bar{k}$ denote respectively the invariant Riemannian measures on G and K induced by the inner product on \mathfrak{g}, $(X, Y) = a^{-1} \cdot B(X, Y)$. We will use on G and K the measures $dx = \text{vol}(K)^{-1} \cdot d\bar{x}$, $dk = \text{vol}(K)^{-1} \cdot d\bar{k}$. As usual, let dx on $\Gamma \backslash G$ be so that

$$\int_{\Gamma \backslash G} \left(\sum_{\gamma} f(\gamma x) \right) dx = \int_G f(x) dx, \quad \text{for } f \in C_c(G).$$

For fixed $\sigma \in \hat{\mathcal{E}}(M)$, the Plancherel density associated to σ can be written $\mu_\sigma(x\lambda) = q_\lambda(x) \cdot \phi_\sigma(x)$, where $q_\lambda(x)$ is a polynomial of degree $2c - 1$ and $\phi_\sigma(x) = 1, \tanh \pi x$ or $\coth \pi x$, depending on σ [O]. Moreover, $\phi_\sigma = 1$ if and only if rank $G > \text{rank } K$. Let $d = c - [c]$, that is, $d = 0$ if rank $G = \text{rank } K$ and $d = \frac{1}{2}$, otherwise. If the Haar
measure on \(G \) is normalized as above, then
\[
q_\sigma(x) = \sum_{i=0}^{c+d-1} b_{2(i-d)+1}(\sigma) \cdot x^{2(i-d)+1}
\]
and \(b_{2c+1}(\sigma) = \text{dim}(\sigma)/(\Gamma(c) \cdot \pi^c) \) [M2, §3].

For fixed \(\tau \) set, if \(x \in G \) and \(s > 0 \),
\[
g_{\tau,s}(x) = \int_{\mathcal{E}(G)} \text{dim}(\tau)^{-1} \cdot \phi_{\tau,\omega}(x^{-1}) \cdot e^{s\lambda_\omega} \, d\mu(\omega)
\]
where \(\phi_{\tau,\omega} \) is the \(\tau \)-spherical trace function associated to \(\omega \) and \(\mu(\omega) \) is the Plancherel measure on \(\mathcal{E}(G) \). DeGeorge and Wallach (unpublished) have proved a general result which implies that \(g_{\tau,s} \in \mathcal{C}^p(G) \) (the \(p \)-Schwartz space of \(G \)) for any \(p > 0 \) (\(G \) can be of arbitrary split rank). Using this fact, one shows [M3, 1.1] that \(\theta_\omega(g_{\tau,s}) = [\tau: \omega] e^{s\lambda_\omega} \) for any \(\omega \in \mathcal{E}(G) \), where \([\tau: \omega] = \text{dim} \text{Hom}_K(\tau, \omega)\).

Let \(\Gamma \subset G \) be a discrete, cocompact, torsion-free subgroup. Fix \(\sigma \in \mathcal{E}(M) \). We assume first that rank \(G = \text{rank} \, K \). Then, by Proposition 1, there exists \(\eta = \sum m_j \tau_j, \quad m_j \in \mathbb{Z}, \tau_j \in \mathcal{E}(K) \) such that \(i^*(\eta) = \sigma \). Set \(g_{\eta,s} = \sum m_j g_{\tau_j,s} \). Since \(g_{\eta,s} \in \mathcal{C}^p(G) \) for any \(p > 0 \), and \(g_{\eta,s} \) is \(K \)-finite, the operator \(\pi_\Gamma(g_{\eta,s}) \) on \(L^2(\Gamma \backslash G) \) is trace-class [M1, §2], and
\[
\text{tr} \pi_\Gamma(g_{\tau,s}) = \sum_{\omega \in \mathcal{E}(G)} n_\Gamma(\omega) \cdot [\eta: \omega] \cdot e^{s\lambda_\omega},
\]
where \([\eta: \omega] = \sum m_j \cdot [\tau_j: \omega]\).

If \(\omega \in \mathcal{E}(G) \), by Langlands' classification, either \(\omega \in \mathcal{E}_2(G) \) or \(\omega \in P(\xi) \cup R(\xi) \cup C(\xi) \), for some \(\xi \in \mathcal{E}(M) \). If \(\omega \in P(\xi) \), then
\[
[\eta: \omega] = [i^*(\eta): \xi] = \begin{cases} 0, & \xi \neq \sigma, \\ 1, & \xi = \sigma. \end{cases}
\]

Hence \(\text{tr} \pi_\Gamma(g_{\tau,s}) = \psi_\sigma(s) + h_\sigma(s) \), where
\[
h_\sigma(s) = \sum_{\omega \in \mathcal{E}(G) \cup R(\sigma) \cup C(\sigma)} n_\Gamma(\omega) \cdot [\eta: \omega] \cdot e^{s\lambda_\omega}.
\]
Note that the sets \(\{ \omega \in \mathcal{E}_2(G) \mid [\eta: \omega] \neq 0 \} \), \(\{ \omega \in C(\sigma) \mid n_\Gamma(\omega) \neq 0 \} \) are finite [DW, p. 489]. Hence \(h_\sigma(s) \) is analytic.

On the other hand ([M1, 5.1], essentially)
\[
\text{tr} \pi_\Gamma(g_{\eta,s}) \sim \text{vol}(\Gamma \mid G) \cdot g_{\eta,s}(1), \quad \text{as } s \to 0^+
\]
(that is, \(\text{tr} \pi_\Gamma(g_{\eta,s}) = \text{vol}(\Gamma \mid G) \cdot g_{\eta,s}(1) = o(s^n) \) for all \(n \in \mathbb{N} \), as \(s \to 0^+ \)).

Set \(g_{\eta,s}^0 = \sum m_j \cdot g_{\tau_j,s}^0 \), where
\[
g_{\tau_j,s}^0 = \sum_{\omega \in \mathcal{E}_2(G)} d(\omega) \cdot [\eta: \omega] \cdot e^{s\lambda_\omega} \quad \text{(a finite sum)}.
\]

By choice of \(\eta \), if \(h_{\eta,s} = g_{\eta,s} - g_{\eta,s}^0 \), then
\[
h_{\eta,s}(1) = \int_{-\infty}^{+\infty} e^{s\lambda_\eta \circ \lambda} \cdot \mu_\sigma(x \lambda) \, dx,
\]
where \(\lambda_{\sigma, \pi \lambda} = -(4x^2 + |p|^2 + a \lambda_\sigma) \) [M1, p. 17]. Here if \(X_1, \ldots, X_r \) is a basis of \(\mathfrak{M} \) such that \((X_i, X_j) = \delta_{ij} \) and \(\Delta_{\mathfrak{M}} = -\Sigma X_i^2 \), \(\lambda_\sigma \) is so that \(\sigma(\Delta_{\mathfrak{M}}) = \lambda_\sigma \cdot I \). On the other hand \(\mu_\sigma(x \lambda) = q_\sigma(x) \cdot \phi_\sigma(x) \), \(q_\sigma(x) = \sum_{i} b_{2i+1}(\sigma) \cdot x^{2i+1} \) and \(\phi_\sigma(x) = \tanh \pi x \) or \(\coth \pi x \). We may write (if \(x \neq 0 \)) \(1 - \phi_\sigma(x) = 2/(1 + e^{2\pi x}) \), where \(\epsilon = 1 \) if \(\phi_\sigma(x) = \tanh \pi x \) (respectively \(\epsilon = -1 \), if \(\phi_\sigma(x) = \coth \pi x \)). Hence

\[
h_{\eta, \delta}(1) = e^{-s(|q|^2 + a \lambda_\sigma)} \cdot \left[2 \int_0^{+\infty} e^{-4sx^2} \cdot q_\sigma(x) \, dx - 4 \int_0^{+\infty} \frac{e^{-4sx^2} \cdot q_\sigma(x)}{1 + \epsilon e^{2\pi x}} \, dx \right]
\]

\[
= e^{-s(|q|^2 + a \lambda_\sigma)} \cdot \sum_{i} b_{2i+1}(\sigma) \cdot i! (4s)^{-i-1}
\]

\[
- \sum_{i} b_{2i+1}(\sigma) \int_0^{+\infty} \frac{4 \cdot e^{-4sx^2} \cdot x^{2i+1}}{1 + \epsilon e^{2\pi x}} \, dx
\].

Furthermore [WW, pp. 266–268]

\[
\int_0^{+\infty} \frac{4x^{2i+1}}{1 + e^{2\pi x}} \, dx = \frac{2^{2(i+1)-1}}{i + 1} \cdot B_{2(i+1)},
\]

\[
\int_0^{+\infty} \frac{4x^{2i+1}}{1 - e^{2\pi x}} \, dx = - \frac{B_{2(i+1)}}{i + 1},
\]

\(B_{2m} \) the \(m \)th Bernoulli number. Hence

\[
\lim_{s \rightarrow 0^+} \sum_{i} b_{2i+1}(\sigma) \int_0^{+\infty} \frac{4 \cdot e^{-4sx^2} \cdot x^{2i+1}}{1 + \epsilon e^{2\pi x}} \, dx
\]

\[
= \sum_{i} b_{2i+1}(\sigma) \left[\frac{(\epsilon + 1) \cdot 2^{2i+1}-1}{i + 1} \right] B_{2(i+1)}
\]

(in fact, the full asymptotic expansion

\[
\int_0^{+\infty} \frac{e^{-4sx^2} \cdot x^{2i+1}}{1 + \epsilon e^{2\pi x}} \, dx \sim \sum_{j=0}^{\infty} a_j \cdot s^j
\]

can be written down explicitly).

Summing up

\[
\psi_\sigma(s) \sim \text{vol}(\Gamma \setminus G) \cdot (h_{\eta, \delta}(1) + g_{\eta, \delta}^0(1)) - h_\sigma(s),
\]

\[
\psi_\sigma(s) \sim \text{vol}(\Gamma \setminus G) e^{-s(|q|^2 + 2\lambda_\sigma)} \cdot \left(\sum_{i} b_{2i+1}(\sigma) \cdot i! (4s)^{-i-1} \right) - g_\sigma(s),
\]

where

\[
g_\sigma(s) = \text{vol}(\Gamma \setminus G) \cdot e^{-s(|q|^2 + 2\lambda_\sigma)} \cdot \left(\sum_{i} b_{2i+1}(\sigma) \int_0^{+\infty} \frac{4 \cdot e^{-4sx^2} \cdot x^{2i+1}}{1 + \epsilon e^{2\pi x}} \, dx \right)
\]

\[
- \text{vol}(\Gamma \setminus G) \cdot g_{\eta, \delta}^0(1) + h_\sigma(s).
\]

This concludes the proof of Theorem 1, in this case.
If rank $G > \text{rank } K$, let $W = W(\mathfrak{g}, \mathfrak{h}) = \{1, u\}$. If $\sigma \in \hat{\mathfrak{g}}(M)$ is such that $\sigma = \sigma^u$, then by Proposition 1, $\sigma = \iota^*(\eta_0)$, $\eta_0 \in R(K)$, and the above proof (with several simplifications) can be repeated. Moreover, in this case $\mu_\sigma(x\lambda) = q_\sigma(x)$, $\delta_\eta, s = 0$, hence $g_\sigma(s) = h_\sigma(s)$.

If $\sigma \neq \sigma^u$ then $\sigma + \sigma^u = \iota^*(\eta_0)$, $\eta_0 \in R(K)$. Define $g_{\eta, s}$ as before. In this case $g_{\eta, s} = h_{\eta, s}$. Arguing as above, one obtains

$$\sum_{\omega \in \mathcal{C}(G)} n_\Gamma(\omega) \cdot [\eta : \omega] \cdot e^{i\lambda_\omega} \sim \text{vol}(\Gamma \setminus G) \cdot h_{\eta, s}(1), \text{ as } s \to 0^+.$$

The left-hand side equals

$$2 \psi_\sigma(s) + 2 \sum_{\omega \in \mathcal{C}(\sigma)} n_\Gamma(\omega) \cdot e^{i\lambda_\omega}$$

since $\hat{\mathfrak{g}}_2(G) = R(\sigma) = \phi$, $\pi_{\alpha,v} = \pi_{\alpha,v,-v}$ ($\nu \in \mathfrak{h}^*_\mathfrak{c}$) and $[\eta : \omega] = 1$ if $\omega \in C(\sigma)$, in this case. Similarly,

$$h_{\eta, s}(1) = 2 \cdot e^{-x(\eta^2 + a\lambda_s)} \cdot \left(\sum_{0}^{c-1/2} b_{2i}(\sigma) \int_{-\infty}^{+\infty} e^{-4isx^2} \cdot x^{2i} dx \right)$$

$$= 2e^{-x(\eta^2 + a\lambda_s)} \cdot \left(\sum_{0}^{c-1/2} b_{2i}(\sigma) \cdot \Gamma\left(i + \frac{1}{2}\right) \cdot \left(4\pi\right)^{-i-1/2} \right).$$

This concludes the proof. We observe that, if $\sigma \in \text{Im}(\iota^*)$, Corollary 1 is an immediate consequence of Theorem 1.1 in [W] and Proposition 1 (with our normalization of measures $C_G = 1$, C_G as in [W, 1.1]). If $\sigma \notin \text{Im}(\iota^*)$, then $\sigma + \sigma^u = \iota^*(\eta_0)$ and (essentially) the above argument yields the result.

2. This section is mainly devoted to the proof of Proposition 1. Assume first that rank $G > \text{rank } K$. Then rank $K = \text{rank } M$. Let $T_1 \subset M$ be a maximal torus. There is a commutative diagram

$$\begin{array}{ccc}
R(K) & \xrightarrow{\iota^*} & R(M) \\
j_{K*} \downarrow & & \downarrow j_{M*} \\
R(T_1)^{W_K} & & \\
\end{array}$$

where j_{K*} is an isomorphism onto $R(T_1)^{W_K}$. If $M^* = N_K(A)$ (the normalizer of A in K), there is $u \in M^* \cap N_K(T)$, $u \notin M$. Therefore, W_K is generated by W_M and $u(1 W_K/W_M|= 2)$. Thus $\text{Im}(j_{K*}) = R(T)^{W_K} = (R(T)^{W_M})^W$ and Proposition 1 is clear, in this case.

From now on, we assume that rank $G = \text{rank } K$. Fix $\mathfrak{r} \subset \mathfrak{h}$, a Cartan subalgebra, and let $\Delta = \Delta(\mathfrak{h}_\mathfrak{c}, \mathfrak{h}_\mathfrak{c})$. Then $\Delta = \Delta_c \cup \Delta_n$, where $\Delta_c (\Delta_n)$ is the set of compact (noncompact) roots. Fix $\Delta^+ \subset \Delta$ a system of positive roots, $\Delta^+ = \Delta^+_c \cup \Delta^+_n$. Let $\{X_\alpha\}_{\alpha \in \Delta^+_c}$ be a Weyl basis of $\mathfrak{g}_\mathfrak{c}$ adapted to the compact form $\mathfrak{g}_\mathfrak{c} = \mathfrak{g} \oplus i\mathfrak{g}$ [H, p. 421]. Then, if σ denotes the conjugation of $\mathfrak{g}_\mathfrak{c}$ with respect to \mathfrak{g}, $\sigma X_\alpha = -X_{-\alpha}$ ($\alpha \in \Delta_c$) and $\sigma X_\alpha = X_{-\alpha}$ ($\alpha \in \Delta_n$). From now on, we fix $\beta \in \Delta^+_n$ and choose $\mathfrak{r} = R(X_\beta + X_{-\beta})$. The following lemma is not difficult.
2.1. Lemma.

\[\mathfrak{m}_C = \ker \beta \oplus \sum_{\alpha \in \Delta, \alpha + \beta \notin \Delta} \mathbb{C} \cdot X_\alpha \oplus \sum_{\alpha \in \Delta, \alpha + 2\beta \in \Delta} \mathbb{C} (X_\alpha + c_\alpha X_{\alpha + 2\beta}) \]

where \(c_\alpha = -N_{\alpha, \beta}/N_{\alpha + 2\beta, \beta} \) and \(N_{\alpha, \beta} \) is such that \([X_\alpha, X_\beta] = N_{\alpha, \beta} \cdot X_{\alpha, \beta} \). Furthermore, \(\ker \beta \) is a Cartan subalgebra of \(\mathfrak{m}_C \) and

\[\Delta_{\mathfrak{m}_C} = \Delta(\mathfrak{m}_C, \ker \beta) = \{ \alpha' = \alpha \mid_{\ker \beta} | \alpha \pm \beta \notin \Delta \} \cup \{ \alpha' = \alpha \mid_{\ker \beta} | \alpha + 2\beta \in \Delta \}. \]

The root spaces are \(\theta_\alpha = \mathbb{C} X_\alpha \), if \(\alpha \pm \beta \notin \Delta \) and \(\theta_\alpha = \mathbb{C} (X_\alpha + c_\alpha X_{\alpha + \beta}) \), if \(\alpha + 2\beta \in \Delta \).

Let \(\Delta_{\mathfrak{m}_C}^+ \subset \Delta_{\mathfrak{m}_C} \) be the positive system induced by \(\Delta^+ \). Let also \(T_1 = \exp(\ker \beta \cap \mathfrak{h}) \), a maximal torus of \(M^0 \) (the connected component of 1 in \(M \)).

2.2. Lemma. Let \(G \) be semisimple, of split rank one, and such that \(\text{rank } G = \text{rank } K \).

Let \(W = W(\mathfrak{g}, \mathfrak{a}) = \{ 1, u \} \). Then \(\sigma = \sigma^u \), for any \(\sigma \in \mathcal{E}(M) \).

Proof. In [KS, §16] the lemma is verified for \(G = \text{Spin}(2n, 1) \), \(G = \text{SU}(n, 1) \) and \(G = \text{Sp}(n, 1) \). We give a different proof. It is well known that \(M = Z(G) \cdot M_0 \).

Moreover, \(W \) is generated by \(u = \exp(\pi i H_{\beta}/(\beta, \beta)) \). If \(\sigma \in \mathcal{E}(M) \), then \(\chi_{\sigma^*}(x) = \chi_{\sigma^*}(x) \) for any \(x \in M \), since this holds for \(x \in T_1 \) and \(x \in Z(G) \). Hence \(\sigma^* = \sigma \).

Remark. In [KS, Theorem 12.5] Knapp and Stein prove that if \(G \) is a linear group of split rank one, \(\pi_{a, \nu} \) is reducible only if \(\nu = 0 \). Moreover, \(\pi_{a, 0} \) is reducible if and only if (i) \(\sigma = \sigma^u \), (ii) \(\mu_{\sigma}(0) > 0 \). Lemma 2.2 says that if \(\text{rank } G = \text{rank } K \), (i) is automatic. If \(\text{rank } G > \text{rank } K \) it is no longer true that \(\sigma = \sigma^u \). In fact, \(\sigma = \sigma^u \) forces \(\mu_{\sigma}(0) = 0 \), hence \(\pi_{a, 0} \) is irreducible.

We next prove a lemma. Let \(K_1 \) be a Lie group with finitely many components, such that \(A_1(K_1) \) is compact. Let \(K_2 \subset K_1 \) be a closed subgroup. As usual, let \(R(K_i) \) and \(\mathcal{E}(K_i) \) denote, respectively, the representation ring and the unitary dual of \(K_i \) \((i = 1,2) \). Let \(S \) be a closed subgroup of \(Z(K_1) \) (the center of \(K_1 \)) such that \(S \subset K_2 \). Then \(R(K_2/S) \) can be identified with the subring of \(R(K_2) \) generated by those representations \(\tau \) of \(K_1 \) such that \(S \subset \ker \tau \). Let \(i^* : R(K_1/S) \to R(K_2/S) \), \(i^* : R(K_1) \to R(K_2) \) denote the restriction homomorphisms.

2.3. Lemma. \(\text{Im}(i^*_\mathcal{E}) = \text{Im}(i^*) \cap R(K_2/S) \).

Proof. Let \(\tau \in \mathcal{E}(K_1) \). If \(i^*(\tau) = \sum r_j \cdot \xi_j \) \((r_j \neq 0) \) we say that \(\xi_j \) is a \(K_2 \)-type of \(\tau \).

We note that if \(\tau \) has a \(K_2 \)-type \(\xi \) such that \(\xi \mid_S = 1 \), then \(\tau \mid_S = 1 \). Indeed, since \(S \) is central in \(K_1 \), then \(\text{Ind}^S_{\mathfrak{k}_2} \xi \mid_S = 1 \). Thus \(\tau \mid_S = 1 \), too. As a consequence, if \(\tau, \gamma \in \mathcal{E}(K_1) \) have a common \(K_2 \)-type and \(\tau \mid_S = 1 \), then \(\gamma \mid_S = 1 \).

We now prove the lemma. Let \(\eta \in R(K_1) \) be such that \(i^*(\eta) \in R(K_2/S) \). If \(\eta = \sum t_j \cdot \gamma_j \), \(i^* \eta = \sum t_j \cdot \sigma_j \), set \(\mathcal{E}_{\eta}(K_1) = \{ \tau_1, \ldots, \tau_k \} \), \(\mathcal{E}_{i^*(\eta)}(K_2) = \{ \sigma_1, \ldots, \sigma_l \} \). By assumption \(\sigma_j \mid_S = 1, j = 1, \ldots, l \).

Define inductively

\[\mathcal{S}_1 = \{ \gamma \in \mathcal{E}_{\eta}(K_1) \mid \gamma \text{ contains a } K_2 \text{-type in } \mathcal{E}_{i^*(\eta)}(K_2) \} \],

\[\mathcal{S}_{i+1} = \{ \gamma \in \mathcal{E}_{\eta}(K_1) \mid \gamma \text{ has a common } K_2 \text{-type with some } \tau \in \mathcal{S}_i \} \].
Then \(S_1 \subset S_2 \subset \cdots \subset S_n(K_1) \). By the above observation, if \(t \in S_j \) for some \(j \), then \(t|_{K_1} = 1 \). Thus, if \(S_n = S_j(K_1) \) for some \(n \in \mathbb{N} \), then \(\eta \in R(K_1/S) \) and the lemma is proved. Otherwise, there exists \(n \) such that \(S_n = S_{n+1} \neq S_{n+1}(K_1) \). It is then easy to see that if \(\eta' = \sum_{\tau_j \in S_j} m_j \tau_j \), then \(i^*(\eta') = 0 \). Thus \(i^*(\eta) = i^*(\eta - \eta') \) and \(\eta - \eta' \in R(K_1/S) \). We note that in general it is not true that \(\ker i^* \subset R(K_1/S) \), as the example \(K_1 = S^1, K_2 = S = \{ \pm 1 \} \) already shows.

2.4. Lemma. Let \(G \) be a simply connected Lie group of split rank one. Assume that \(\text{rank } G = \text{rank } K \) and \(\mathfrak{g} \neq \mathfrak{g}/(2, \mathbb{R}) \). Then \(M \) is simply connected.

PROOF. By applying the long exact sequence in homotopy to the fibration \(M \to K \to K/M \), one readily obtains \(\pi_0(M) = \pi_1(M) = \{ 1 \} \) (\(K/M \) is diffeomorphic to the unit sphere in \(\mathfrak{g} \) and \(\dim \mathfrak{g} \geq 4 \)).

2.5. Proof of Proposition 1. By Lemma 2.2, in order to prove Proposition 1, we must show that \(i^*: R(K) \to R(M) \) is surjective, if \(\text{rank } G = \text{rank } K \). By Lemma 2.3 (applied to \((K_1, K_2) = (K, M) \)), it is enough to verify this under the assumption that \(K \) (hence \(G \)) be simply connected. Now, since \(G \) has split rank one, we may assume that \(G \) is simple and, on the other hand, if \(\mathfrak{g} = \mathfrak{g}/(2, \mathbb{R}) \), it is clear that \(i^* \) is surjective. We thus assume that \(G \) is simple, simply connected, \(\text{rank } G = \text{rank } K \) and \(\mathfrak{g} \neq \mathfrak{g}/(2, \mathbb{R}) \).

It will be enough to show, by Lemma 2.4, that the fundamental representations of \(\mathcal{R}_c \) are restrictions of virtual representations of \(\mathfrak{R}_c \). We give a proof by case-by-case verification. Though a direct proof would be desirable, by this method, one finds explicitly \(\eta \in R(K) \) with \(i^*(\eta) = \sigma \), for each fundamental representation \(\sigma \) of \(\mathfrak{R}_c \).

Since, by Theorem 1, the coefficients \(a_i (i > 0) \) of the asymptotic expansion of \(\psi_\sigma(s) \) involve the numbers \(\lfloor \eta : \omega \rfloor (\omega \in \mathfrak{c}(G)) \), the knowledge of \(\eta \) may be of some use.

From now on we identify, via the Killing form, the imaginary dual of \(\mathfrak{S} \) with a convenient subspace of \(\mathbb{R}^n \), so that the usual inner product of \(\mathbb{R}^n \) corresponds to a multiple of the Killing form. Let \(\{ e_1, \ldots, e_n \} \) be the canonical basis of \(\mathbb{R}^n \). We often denote by \(1 \) the trivial representation (of any Lie algebra). We will make use of the well-known branching formulas (see [Z, pp. 128–132 or B, 10]).

(i) \(\mathfrak{g} = \mathfrak{g} \mathfrak{u}(n, 1) (n \geq 2) \).

\[
i \mathfrak{g}^* = \left\{ \sum_{i=1}^{n+1} t_i e_i | t_1 + \cdots + t_{n+1} = 0 \right\}, \quad \mathfrak{H}_c \cong \mathfrak{u}(n), \quad \mathfrak{M}_c \cong \mathfrak{u}(n-1),
\]

\[
\Delta_c^+ = \{ e_i - e_j | 2 \leq i < j \leq n+1 \}, \quad \Delta_n^+ = \{ e_i - e_j | 2 \leq i < n+1 \}, \quad \beta = e_1 - e_2.
\]

The centers of \(\mathfrak{H} \) and \(\mathfrak{M} \) correspond, respectively, to \(R(e_1 - \frac{1}{n} (e_2 + \cdots + e_{n+1})) \) and \(R(e_1 + e_2 - 2(e_3 + \cdots + e_{n+1}))/\langle n - 1 \rangle \). Any \(a \in \mathbb{R} \) defines a character \(\phi_a \) (\(\phi_a' \)) on \(\mathfrak{H} (\mathfrak{M}) \) by the rule

\[
\phi_a \left(e_1 - \frac{1}{n} \sum_{i=2}^{n+1} e_i \right) = ia \phi_a' \left((e_1 + e_2) - \frac{2\sum_{i=3}^{n+1} e_i}{n - 1} \right) = ia \phi_a'.
\]

Hence \(\phi_a (\phi_a') \) defines a one-dimensional representation of \(\mathfrak{H}_c (\mathfrak{M}_c) \) and it is easy to verify that \(i^*(\phi_a) = \phi_a' \).
The fundamental representations are \(\lambda_i = \varepsilon_2 + \cdots + \varepsilon_i \) (for \(i = 1, \ldots, n-2 \)) and \(\lambda'_j = \varepsilon_3 + \cdots + \varepsilon_j \) (for \(j = 1, \ldots, n-1 \)), for \(\mathfrak{R}_C \) and \(\mathfrak{W}_C \). The branching formulas imply

\[
i^*(\lambda_2) = \phi_1 \oplus \phi_2 \oplus \lambda'_3, \\
i^*(\lambda_i) = \phi_{2i-3} \otimes \lambda'_i \oplus \phi_{2i-2} \otimes \lambda'_{i+1}, \quad 3 \leq i \leq n-1, \\
i^*(\lambda_n) = \phi_{2n-3} \otimes \lambda'_n \oplus \phi_{2n-2}.
\]

where \(\phi'_j = \phi_{2j} \) (\(a_j \) can be easily computed). Since \(\text{Im}(i^*) \) contains \(\phi'_a \) for any \(a \), this clearly implies that \(\lambda'_j \in \text{Im}(i^*) \) for \(3 \leq j \leq n \).

(ii) \(\mathfrak{S} = \mathfrak{S}(2n, 1) \).

\[
i^* = \left\{ \sum_{i=1}^n t_i \varepsilon_i | t_i \in \mathbb{R} \right\}, \quad \Delta^+ = \{ \varepsilon_i | 1 \leq i \leq n, \varepsilon_i \pm \varepsilon_j | 1 \leq j \leq n \},
\]

\[
\Delta_c^+ = \{ \varepsilon_i \pm \varepsilon_j | 1 \leq i < j \leq n \}, \quad \Delta_n^+ = \{ \varepsilon_i | 1 \leq i \leq n \},
\]

\(\beta = \varepsilon_1 \), \(\Delta_{\mathfrak{N}}^+ = \{ \varepsilon_i | 2 \leq i \leq n, \varepsilon_i \pm \varepsilon_j | 2 \leq j \leq n \} \).

Fundamental weights:

\(\mathfrak{R}_C \): \(\lambda_i = \varepsilon_1 + \cdots + \varepsilon_i \) (for \(i = 1, \ldots, n-2 \)), \(\lambda_\pm = \frac{1}{2} (\varepsilon_1 + \cdots + \varepsilon_{n-1} \pm \varepsilon_n) \)

\(\mathfrak{W}_C \): \(\lambda'_i = \varepsilon_2 + \cdots + \varepsilon_i \) (for \(i = 2, \ldots, n-1 \)), \(\lambda'_+ = \frac{1}{2} (\varepsilon_2 + \cdots + \varepsilon_n) \).

By the branching formulas

\[
i^*(\lambda_i) = \lambda'_i \oplus \lambda'_{i+1}, \quad i = 1, \ldots, n-2, (\lambda'_1 = 1), i^*(\lambda_\pm) = \lambda'_+.
\]

Hence \(\lambda'_{i+1} = i^*(\lambda_i - \lambda_{i-1} + \lambda_{i-2} - \cdots \pm 1) \), \(\lambda'_+ = i^*(\lambda_\pm) \). We include the case \(\mathfrak{S} = \mathfrak{S}(2n + 1, 1) \), for completeness.

(iii) \(\mathfrak{S} = \mathfrak{S}(2n + 1, 1) \).

\[
i^* = \left\{ \sum_{i=1}^{n+1} t_i \varepsilon_i | t_i \in \mathbb{R} \right\}, \quad \Delta^+ = \{ \varepsilon_i \pm \varepsilon_j | 1 \leq j \leq n + 1 \},
\]

\[
\Delta_c^+ = \{ \varepsilon_i \pm \varepsilon_j | 2 \leq i < j \leq n \}, \quad \Delta_n^+ = \{ \varepsilon_i \pm \varepsilon_j | 2 \leq i < j \leq n + 1 \}.
\]

Fundamental weights:

\(\mathfrak{R}_C \): \(\lambda_i = \varepsilon_2 + \cdots + \varepsilon_i \) (for \(i = 2, \ldots, n \)), \(\lambda_+ = \frac{1}{2} (\varepsilon_2 + \cdots + \varepsilon_{n+1}) \)

\(\mathfrak{W}_C \): \(\lambda'_i = \varepsilon_2 + \cdots + \varepsilon_i \) (for \(i = 2, \ldots, n + 1 \)), \(\lambda'_+ = \frac{1}{2} (\varepsilon_2 + \cdots + \varepsilon_n \pm \varepsilon_{n+1}) \).

Moreover, \(i^*(\lambda_i) = \lambda'_i \oplus \lambda'_{i-1} \) (for \(2 \leq i \leq n \)), \(i^*(\lambda_+) = \lambda'_+ \oplus \lambda'_- \).

Hence \(\lambda'_i = i^*(\lambda_i - \lambda_{i-1} + \lambda_{i-2} - \cdots \pm 1) \in \text{Im}(i^*) \) (for \(i = 2, \ldots, n \)).

Recall [Hu, p. 188] that \(\lambda'_+ \oplus \lambda'_- = \lambda'_n \oplus \lambda'_{n-2} \oplus \cdots \).

Thus \(\lambda'_+ \oplus \lambda'_- \in \text{Im}(i^*) \). On the other hand, if \(W = \{ 1, u \} \) one knows that \(\lambda'_{2i} = \lambda'_i (i = 2, \ldots, n-1), (\lambda'_\pm)^u = \lambda'_\pm \).

Hence \(\text{R}(M)^W = \mathbb{Z}[\lambda'_2, \ldots, \lambda'_{n-1}][\lambda'_+, \lambda'_-]^W \) is a polynomial ring over \(\mathbb{Z}[\lambda'_2, \ldots, \lambda'_{n-1}] \) in the symmetric functions \(\lambda'_+ \oplus \lambda'_- \). Hence, if \(M \) is simply connected (i.e. \(G = \text{Spin}(2n + 1, 1) \)) \(\text{Im}(i^*) = \text{R}(M)^W \).
The case $G = SO(2n, 1)$ follows from Lemma 2.3.

$$i\mathfrak{E} = \mathfrak{d} \rho(n, 1)$$

$$(iv) \mathfrak{S} = \mathfrak{d} \rho(n, 1) (n \geq 2).$$

$$\mathfrak{L} \cong \mathfrak{d} \rho(1) \times \mathfrak{d} \rho(n), \quad i\mathfrak{S}^* = \left\{ \sum_{i=1}^{n+1} l_i e_i | l_i \in \mathbb{R} \right\}.$$
DISTRIBUTION OF THE PRINCIPAL SERIES IN $L^2(\Gamma \backslash G)$

(dimensions 7, 21, and 8). The branching formulas are

$$i^*(\lambda_i) = \lambda'_i + 1, \quad i^*(\lambda_2) = \lambda'_1 \oplus \lambda'_2 \oplus \lambda'_3, \quad i^*(\lambda_+) = \lambda'_1 \oplus \lambda'_+ \oplus 1$$

and

$$i^*(\lambda_3) = (\lambda'_1 + \lambda'_+) \oplus \lambda'_2 \oplus \lambda'_+.$$

Therefore, $\lambda'_+ = i^*(\lambda_1 - 1)$, $\lambda'_1 = i^*(\lambda_+ - \lambda_1)$, $\lambda'_2 = i^*(\lambda_2 - \lambda_+ + 1)$ and i^* is surjective. We sketch the proof of the branching formulas.

A basis for the unipotent radical of the Borel subalgebra of \mathfrak{m}_C defined by $\Delta_{\mathfrak{m}}$ is $X_{e_i + e_j}$, $2 \leq i \leq 4$, $X_{e_i - e_j}$, $2 \leq i < j \leq 4$, $X_{e_i + e_j - e_k}$, $X_{e_i + e_j + c_2}$, and $X_{e_i - e_j}$, where the constants c_i are as in Lemma 2.1.

Since $\lambda_1 = \frac{1}{2} \beta + \lambda'_+$, the restriction of λ_1 contains λ'_+. Since $\dim(\lambda_1) = 9$, $\dim(\lambda'_+) = 8$, the first identity is clear.

Now $\lambda_2 = (-\frac{1}{2}) \beta + \lambda'_+$. Hence $i^*(\lambda_2)$ contains λ'_+. Since any weight of λ_2 is of the form $\frac{1}{2}(\epsilon_1 \pm \epsilon_2 \pm \epsilon_3 \pm \epsilon_4)$ one checks that any vector of weight $\frac{1}{2}(\epsilon_1 + \epsilon_2 + \epsilon_3 - \epsilon_4)$ is \mathfrak{m}_C-dominant. Thus, λ'_+ restricted to \mathfrak{m}_C contains λ'_1. Since $\dim(\lambda'_1) = 7$, the third identity follows. Now we study $\lambda_2 = \epsilon_1 + \epsilon_2$, restricted to \mathfrak{m}_C. This is the adjoint representation of \mathfrak{g}_C with weights $\pm \epsilon_i$, $1 \leq i \leq 4$, $\pm \epsilon_j$, $1 \leq i < j \leq 4$, and 0, with multiplicity 4. Clearly, $i^*(\lambda_2)$ contains the \mathfrak{m}_C-module with highest weight λ'_2. On the other hand, it is easily checked that any vector of weight ϵ_1 is \mathfrak{m}_C-dominant. Since $\epsilon_1 \in \ker i^* = \lambda'_+$, then $i^*(\lambda_2) = \lambda'_2 \oplus \lambda'_+ \oplus \mu$, a representation of dimension 7. Now if $v_1 \neq 0$ is of weight $\epsilon_2 + \epsilon_3$ and $v_2 \neq 0$ is of weight $\epsilon_1 - \epsilon_4$, then $X_{e_i - e_j}(v_1)$ and $X_{e_i + e_j}(v_2)$ are nonzero vectors of weight $\epsilon_1 + \epsilon_2$. Hence, we can choose v_1 and v_2 so that $c_1 X_{e_i - e_j}(v_1) + c_2 X_{e_i + e_j}(v_2) = 0$. It is easy to verify that with this choice $v_1 + v_2$ is \mathfrak{m}_C-dominant. Since

$$\epsilon_2 + \epsilon_3 = \frac{1}{2}(\epsilon_1 + \epsilon_2 + \epsilon_3 - \epsilon_4) - \beta, \quad \epsilon_1 - \epsilon_4 = \frac{1}{2}(\epsilon_1 + \epsilon_2 + \epsilon_3 - \epsilon_4) + \beta,$$

the \mathfrak{m}_C-submodule spanned by $v_1 + v_2$ has highest weight λ'_1. This proves the third identity, since $\dim(\lambda'_1) = 7$. We omit the proof of the last one, since from the first three already concludes that i^* is surjective.

We conclude the paper by computing $\ker(i^*: R(K) \to R(M))$ explicitly. Recall that each $\eta \in \ker(i^*)$ yields an alternating sum formula in the multiplicities $r_i(\omega)$, if Γ is torsion-free [M3, 1.2]. We assume from now on that G is a connected, semisimple Lie group of split rank one, with finite center. If K is compact and $\tilde{K} \to K$, a finite covering, we identify $\delta(K)$ with $\{\tau \in \delta(\tilde{K})|\ker p \subset \ker \tau\}$ and $R(K)$ with the corresponding subring of $R(\tilde{K})$. Let T be a maximal torus of K and $\tilde{T} = p^{-1}(T)$.

2.6. Lemma. (i) If rank $G >$ rank K, then $\ker i^* = 0$.

(ii) If rank $G =$ rank K, let $\tilde{G} \to G$ be a finite covering so that $\delta_{\eta} = \frac{1}{2}(\Sigma_{\Delta^+} \alpha)$ is a weight of $\tilde{T} = p^{-1}(T)$. Then $\ker i^* = R(K) \cap R(\tilde{K}) \cdot \eta_1$, where $\eta_1 \in R(\tilde{K})$ is such that $\eta_1(t) = t^{r_\beta(t) - 1})$, $t \in \tilde{T}$.

Proof. As noted at the beginning of the section, if rank $G >$ rank K, $i^*: R(K) \to R(M)^W$ is an isomorphism.
We thus assume that rank $G = \text{rank } K$. We also assume that δ_n is a weight of T. The lemma is obvious once it is proved in this case.

Let $\beta \in \Delta_n^+$ and $\mathfrak{A} = \mathbb{R}(X_\beta + X_{-\beta})$, as above.

If $\eta \in \ker i^*$, then $\eta(t) = 0$ for $t \in T_\beta$, since $T_\beta \subset M$. Therefore ([A, 6.4], essentially), there is $\eta' \in R(T)$ so that

$$\eta(t) = (t^\beta - 1) \cdot \eta'(t), \quad t \in T.$$

Since $\eta' = \eta$ ($s \in W_K$), then $\eta(t) = 0$, for $t \in sT_\beta = T_{s\beta}$. If $s\beta \neq \pm \beta$, then $\dim T_\beta \cap T_{s\beta} < \dim T_\beta$. Thus, by continuity, $\eta'(t) = 0$, $t \in T_{s\beta}$. Hence, $\eta'(t) = (t^{s\beta} - 1) \cdot \eta''(t)$, for some $\eta'' \in R(T)$.

We may thus write

$$(*) \quad \eta = \prod_{\gamma \in \Psi} (t^\gamma - 1) \cdot \eta' \quad (\eta' = \eta'(\Psi) \in R(T)),$$

where Ψ is any subset of $W_K \cdot \beta$ such that $\Psi \cap -\Psi = \emptyset$.

Since \emptyset is of split rank one, then either $K \subset C$ acts irreducibly on \mathfrak{P}_C, or $\mathfrak{P}_C = \mathfrak{P}^+ + \mathfrak{P}^-$, where $\mathfrak{P}^+ = \Sigma_{\Delta_n^+} \mathfrak{P}_a, \mathfrak{P}^- = \Sigma_{\Delta_n^-} \mathfrak{P}_a$ and \mathfrak{P}_a are irreducible subspaces. Furthermore, all noncompact roots have the same length [KW, 12.1]. Thus $W_K \cdot \beta = \Delta_n^+$ or $W_K \cdot \beta = \Delta_n^-$, since W_K acts transitively on weights of a fixed length.

Then, if $\Psi = \Delta_n^+$ in $(*)$, we may write

$$\eta = \eta_0 \cdot \eta'' \quad \text{with } \eta_0(t) = \prod_{\gamma \in \Delta_n^+} (t^\gamma - 1), \eta'' \in R(T),$$

or

$$\eta = \eta_1 \cdot \eta', \quad \text{where } \eta_1(t) = t^{-\delta_n} \cdot \eta_0(t) \in R(T)^{W_K} \text{ and } \eta' \in R(T)^{W_K}. $$

On the other hand, $M = Z(G) \cdot M^0$ (M^0, the connected component of 1 in M) and $T_\beta = Z(G) \cdot T_\beta^0$ ($T_\beta^0 = \exp(\ker \beta \cap \emptyset$), a maximal torus of M^0). Hence, $M = \cup \{x \cdot T_\beta \cdot x^{-1} \mid x \in M\}$ and $\eta_1 \in \ker i^*$, since $\eta_1(t) = 0$ for $t \in T_\beta$. Thus ker $i^* = R(K) \cdot \eta_1$, as asserted.

EXAMPLES. (i) G simply connected. Then ker $i^* = R(K) \cdot \eta_1$.

(ii) $G = SL(2, \mathbb{R})$.

Then $K = T = \left\{ k(\theta) = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \right\}$, $\mathfrak{S}(K) = \{\tau_n \mid \tau_n(k(\theta)) = e^{i\theta} \tau_n\}, \Delta = \Delta_n = \{\pm \alpha\}, \ k(\theta)^n = e^{2i\theta} = \tau_n(k(\theta))$. Hence ker $i^* = R(K) \cdot (\tau_n - \tau_{-n})$, as in [M3, Lemma 2.1].

(iii) $\emptyset = \mathbb{S}(n, 1)$.

Then $W_K \cdot \beta = \Delta_n^+$ and $\eta_0(t) = \prod_{\Delta_n^+}(t^\gamma - 1) \in R(T)^{W_K}$. Hence ker $i^* = R(K) \cdot \eta_0$

(if δ_n is a weight of K, η_0 and η_1 differ by a unit in $R(T)^{W_K} \simeq R(K)$).

(iv) $G = SO(2n, 1)$.

In the notation of 2.5(ii), by Lemma 2.6,

$$\ker i^* = \{ \eta = \eta' \otimes \eta_1 \mid \eta' \in R \text{Spin}(2n), \eta \in RSO(2n) \}.$$

where $\eta_1 = \lambda_+ - \lambda_- \in R \text{Spin}(2n)$. Now

$$R \text{Spin}(2n) = \mathbb{Z}[\lambda_1, \ldots, \lambda_n][\lambda_+, \lambda_-] \subset RSO(2n)[\lambda_+, \lambda_-]$$

[Hu, Chapter 13].
DISTRIBUTION OF THE PRINCIPAL SERIES IN $L^2(\Gamma \backslash G)$

It is then easy to check that $\eta' \otimes \eta_1 \in \text{RSO}(2n)$ if and only if $\eta' = \eta^+ \otimes \lambda_+ + \eta^- \otimes \lambda_- \eta^+ \in \text{RSO}(2n)$. That is,

$$\ker i^* = \left\{ (\eta^+ \otimes \lambda_+ + \eta^- \otimes \lambda_-) \otimes (\lambda_+ - \lambda_-) | \eta^+ \in \text{RSO}(2n) \right\}.$$

REFERENCES

SCHOOL OF MATHEMATICS, INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW JERSEY 08540

INSTITUTO DE MATEMÁTICA, ASTRONOMÍA Y FÍSICA, UNIVERSIDAD NACIONAL DE CÓRDOBA, VALPARAISO Y ROGELIO MARTINEZ, CIUDAD UNIVERSITARIA, CÓRDOBA 5000, ARGENTINA (Current address of both authors)