On the distribution of the principal series in $L^{2}(\Gamma \backslash G)$
HTML articles powered by AMS MathViewer
- by Roberto J. Miatello and Jorge A. Vargas
- Trans. Amer. Math. Soc. 279 (1983), 63-75
- DOI: https://doi.org/10.1090/S0002-9947-1983-0704602-9
- PDF | Request permission
Abstract:
Let $G$ be a semisimple Lie group of split rank one with finite center. If $\Gamma \subset G$ is a discrete cocompact subgroup, then ${L^2}(\Gamma \backslash G) = {\Sigma _{\omega \in \mathcal {E}(G)}}{n_\Gamma }(\omega ) \cdot \omega$. For fixed $\sigma \in \mathcal {E}(M)$, let $P(\sigma )$ denote the classes of irreducible unitary principal series ${\pi _{\sigma ,iv}}(v \in {\mathcal {U}^{\ast }})$. Let, for $s > 0,{\psi _\sigma }(s) = {\Sigma _{\omega \in P(\sigma )}}{n_\Gamma }(\omega ) \cdot {e^{s{\lambda _\omega }}}$, where ${\lambda _\omega }$ is the eigenvalue of $\Omega$ (the Casimir element of $G$) on the class $\omega$. In this paper, we determine the singular part of the asymptotic expansion of ${\psi _\sigma }(s)$ as $s \to {0^ + }$ if $\Gamma$ is torsion free, and the first term of the expansion for arbitrary $\Gamma$. As a consequence, if ${N_\sigma }(r) = \Sigma _{\omega \in P(\sigma ),|{\lambda _{{\omega }}| < r}}{n_\Gamma }(\omega )$ and $G$ is without connected compact normal subgroups, then \[ {N_\sigma }(r)\;\sim {C_G}\; \cdot \; |Z(G) \cap \Gamma |\; \cdot \;{\text {vol}}(\Gamma \backslash G)\; \cdot \; \dim (\sigma )\; \cdot \; {r^c} \qquad (c = \frac {1} {2} \dim G/K),\] as $r \to + \infty$. In the course of the proof, we determine the image and kernel of the restriction homomorphism ${i^{\ast }}:R(K) \to R(M)$ between representation rings.References
- J. Frank Adams, Lectures on Lie groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0252560
- M. Welleda Baldoni Silva, The embeddings of the discrete series in the principal series for semisimple Lie groups of real rank one, Trans. Amer. Math. Soc. 261 (1980), no. 2, 303–368. MR 580893, DOI 10.1090/S0002-9947-1980-0580893-X
- Jochen Brüning and Ernst Heintze, Representations of compact Lie groups and elliptic operators, Invent. Math. 50 (1978/79), no. 2, 169–203. MR 517776, DOI 10.1007/BF01390288
- J. J. Duistermaat, J. A. C. Kolk, and V. S. Varadarajan, Spectra of compact locally symmetric manifolds of negative curvature, Invent. Math. 52 (1979), no. 1, 27–93. MR 532745, DOI 10.1007/BF01389856
- David L. DeGeorge and Nolan R. Wallach, Limit formulas for multiplicities in $L^{2}(\Gamma \backslash G)$. II. The tempered spectrum, Ann. of Math. (2) 109 (1979), no. 3, 477–495. MR 534759, DOI 10.2307/1971222
- I. M. Gel′fand, Automorphic functions and the theory of representations, Proc. Internat. Congr. Mathematicians (Stockholm, 1962) Inst. Mittag-Leffler, Djursholm, 1963, pp. 74–85. MR 0175997
- I. M. Gel′fand, M. I. Graev, and I. I. Pyatetskii-Shapiro, Representation theory and automorphic functions, W. B. Saunders Co., Philadelphia, Pa.-London-Toronto, Ont., 1969. Translated from the Russian by K. A. Hirsch. MR 0233772
- R. Gangolli, Asymptotic behavior of spectra of compact quotients of certain symmetric spaces, Acta Math. 121 (1968), 151–192. MR 239000, DOI 10.1007/BF02391912
- Ramesh Gangolli and Garth Warner, On Selberg’s trace formula, J. Math. Soc. Japan 27 (1975), 328–343. MR 399354, DOI 10.2969/jmsj/02720328
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
- Dale Husemoller, Fibre bundles, McGraw-Hill Book Co., New York-London-Sydney, 1966. MR 0229247
- A. W. Knapp and E. M. Stein, Intertwining operators for semisimple groups, Ann. of Math. (2) 93 (1971), 489–578. MR 460543, DOI 10.2307/1970887
- A. W. Knapp and N. R. Wallach, Szegö kernels associated with discrete series, Invent. Math. 34 (1976), no. 3, 163–200. MR 419686, DOI 10.1007/BF01403066
- Roberto J. Miatello, The Minakshisundaram-Pleijel coefficients for the vector-valued heat kernel on compact locally symmetric spaces of negative curvature, Trans. Amer. Math. Soc. 260 (1980), no. 1, 1–33. MR 570777, DOI 10.1090/S0002-9947-1980-0570777-5
- Roberto J. Miatello, On the Plancherel measure for linear Lie groups of rank one, Manuscripta Math. 29 (1979), no. 2-4, 249–276. MR 545044, DOI 10.1007/BF01303630
- Roberto J. Miatello, An alternating sum formula for multiplicities in $L^{2}(\Gamma \backslash G)$, Trans. Amer. Math. Soc. 269 (1982), no. 2, 567–574. MR 637710, DOI 10.1090/S0002-9947-1982-0637710-0
- Kiyosato Okamoto, On the Plancherel formulas for some types of simple Lie groups, Osaka Math. J. 2 (1965), 247–282. MR 219668
- Nolan R. Wallach, An asymptotic formula of Gelfand and Gangolli for the spectrum of $G\backslash G$, J. Differential Geometry 11 (1976), no. 1, 91–101. MR 417340 E. J. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Univ. Press, London and New York, 1927.
- D. P. Zhelobenko, Kompaktnye gruppy Li i ikh predstavleniya, Izdat. “Nauka”, Moscow, 1970 (Russian). MR 0473097
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 279 (1983), 63-75
- MSC: Primary 22E45; Secondary 11F70, 22E40, 58G25
- DOI: https://doi.org/10.1090/S0002-9947-1983-0704602-9
- MathSciNet review: 704602