Operators of $P$variation and the evolution representation problem
HTML articles powered by AMS MathViewer
 by M. A. Freedman PDF
 Trans. Amer. Math. Soc. 279 (1983), 95112 Request permission
Abstract:
In contrast to a continuous linear semigroup, a continuous linear evolution $U( \cdot )$ may be nondifferentiable or of unbounded variation. In order to study these evolutions we introduce a class of operatorvalued functions $A( \cdot )$ which satisfy a generalized bounded variation condition and represent $U$ as the product integral $U = \prod [I + dA]$.References

A. L. Cauchy, Cours d’analyse de l’Ecole Royal Polytechnique, 1821.
 J. C. Burkill and F. W. Gehring, A scale of integrals from Lebesgue’s to Denjoy’s, Quart. J. Math. Oxford Ser. (2) 4 (1953), 210–220. MR 57307, DOI 10.1093/qmath/4.1.210
 Michel Bruneau, Variation totale d’une fonction, Lecture Notes in Mathematics, Vol. 413, SpringerVerlag, BerlinNew York, 1974 (French). MR 0393380
 M. A. Freedman, A faithful HilleYosida theorem for finitedimensional evolutions, Trans. Amer. Math. Soc. 265 (1981), no. 2, 563–573. MR 610966, DOI 10.1090/S00029947198106109665
 M. A. Freedman, Necessary and sufficient conditions for discontinuous evolutions with applications to Stieltjes integral equations, J. Integral Equations 5 (1983), no. 3, 237–270. MR 702433
 F. W. Gehring, A study of $\alpha$variation. I, Trans. Amer. Math. Soc. 76 (1954), 420–443. MR 64859, DOI 10.1090/S00029947195400648599
 J. V. Herod and R. W. McKelvey, A HilleYosida theory for evolutions, Israel J. Math. 36 (1980), no. 1, 13–40. MR 589655, DOI 10.1007/BF02761228
 E. R. Love, A generalization of absolute continuity, J. London Math. Soc. 26 (1951), 1–13. MR 39791, DOI 10.1112/jlms/s126.1.1
 J. S. MacNerney, Integral equations and semigroups, Illinois J. Math. 7 (1963), 148–173. MR 144179
 J. S. MacNerney, A linear initialvalue problem, Bull. Amer. Math. Soc. 69 (1963), 314–329. MR 146613, DOI 10.1090/S000299041963109052
 D. S. Nathan, Oneparameter groups of transformations in abstract vector spaces, Duke Math. J. 1 (1935), no. 4, 518–526. MR 1545897, DOI 10.1215/S0012709435001399 N. Wiener, The quadratic variation of a function and its Fourier coefficients, J. Math. Phys. Sci. 3 (1924), 7394.
 L. C. Young, An inequality of the Hölder type, connected with Stieltjes integration, Acta Math. 67 (1936), no. 1, 251–282. MR 1555421, DOI 10.1007/BF02401743
Additional Information
 © Copyright 1983 American Mathematical Society
 Journal: Trans. Amer. Math. Soc. 279 (1983), 95112
 MSC: Primary 47D05
 DOI: https://doi.org/10.1090/S00029947198307046042
 MathSciNet review: 704604